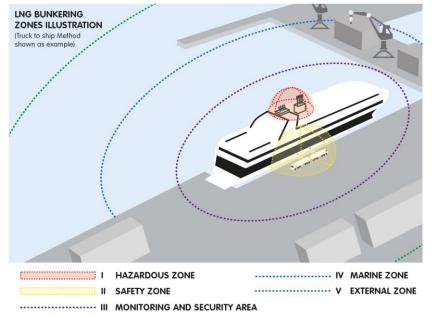
HOW SAFE IS SAFE ENOUGH?

David Haynes, Principal Technical Advisor, SGMF Ann Halford DNV GL

Who are SGMF?

- SGMF is the Society for Gas as a Marine Fuel
- Membership based NGO aiming to develop good practice for ships designed and operating under the IGF code and the onshore and offshore services that support them
- London based secretariat
- 115 members (end September 2017)
- Guidance is provided by working groups made up from SGMF's membership supported, when required, by industry experts
- This presentation covers the work done by Working Group 2 on Control Zones for LNG bunkering


https://www.sgmf.info/

Zones & Areas

- Hazardous zones
 - Where gas might be present at all times
- Safety zone
 - Where gas may be present during bunkering from a leak or failure
 - Place where activities need to be controlled
- Monitoring & security area
 - Space around safety zone to protect control measures
- Maritime exclusion zone
 - Keep other vessels sufficiently distant to avoid collisions and hydrodynamic effects impacting moorings
- External zone (in some jurisdictions)
 - Distance to a defined risk contour, typically to protect the public

* Truck to ship bunkering method shown as the example

** Hazardous zone around the ship/truck manifold(s) and truck relief valve not shown for clarity

*** Relative sizes and distances are for illustration purposes only

- Any leak during bunkering will impact the safety zone
- Access to and activities within the safety must be managed
- Activities in the safety zone must be authorised
- Authorisation = risk assessment and mitigation to acceptable levels

What is the worst case scenario?

There is little evidence (so far) to determine a "worst case" scenario

Three hazard scenarios:

- 1. Event only impacts on the safety zone
 - Hazard remains within the safety zone and is therefore limited in consequence
- 2. Event potentially impacts outside the safety zone but can be controlled to the safety zone by the PIC
 - High consequence, very low frequency events, that take time to develop
 - Events need immediate attention but can be prevened from escalating
- 3. Event is uncontrollable and impacts outside the safety zone
 - Impacts mitigated by probability of occurrence 1016
 Impacts mitigated by probability of occurrence 1016

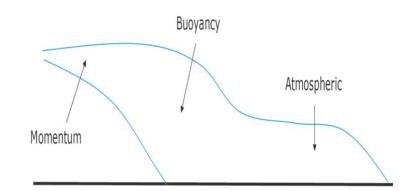
What does/should happen in the safety zone?

- Flanges and connectors leak frequently during connection and cooldown
- Hoses leak before failure
 - An immediate guillotine failure does not appear credible
 - Dry break coupling required by the IGF code
 prevents over extension failure scenario
- PIC controls the safety zone so can intervene at the early stages of a hazardous event
 - Flow can be stopped and connections tightened
 - Hose leaks can be stopped/controlled before rupture
 - Inventory loss can be minimised
 - Intervention increases the time available for effective emergency response

sea change.

Controlling event

- Dispersion of gas from a LNG/vapour leak to the lower flammable limit is hazardous to the largest distance
- On ignition this will become a flash fire which burns back to the leak source
- This therefore defines the safety zone
- Pool and jet (torch) fires are catastrophic to anything in their immediate vicinity but are relatively compact
- Unless in an extensive, congested area, explosion (deflagrations) effects are very localised



Physics of gas dispersion - 1

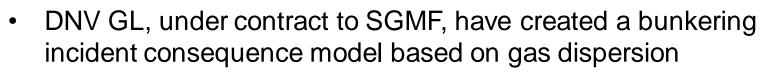
- Gas dispersion depends on 3 factors
 - Momentum from the pressure/velocity behind the leak
 - Buoyancy of the material compared to the atmosphere
 - Atmospheric effects

Physics of gas dispersion

• Vertical (upwards) release

• Vertical (downwards)/pool release

• Horizontal release



• Other angles

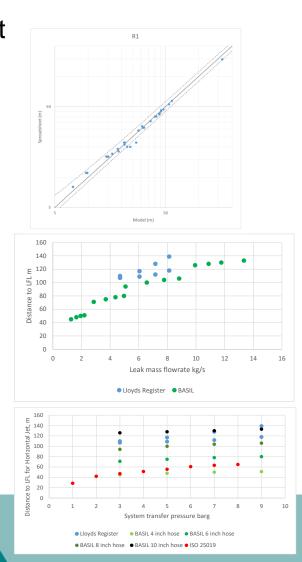
SGMF consequence model - BASIL

- Model predicts, using scientific and repeatable methodologies, the maximum distance to the flammable boundary (LFL)
- Distance to LFL is a function of
 - Hole size
 - LNG quality
 - Transfer temperature, pressure & flowrate
 - Local atmospheric conditions
- Model is deliberately conservative

BASIL example

- User enters key operational data for the LNG bunkering
- BASIL interpolates in 8 dimensions across 1.4 million data points

General	Information	Ship	R2 Tattkor Ho+		
Port Name	Tokyo		TH3	R, H1 R1.	_
Bunkering Information	Bunkering ship X for customer Y		Rj	Hati•Ship	
Date (DD/MM/YYYY)	16 May 2017			TH ₃	Ra
Port I	nformation			H ₂	
Latitude	35.6 degrees	Ship		Hate Ra	-
Longitude	139.8 degrees	PROTOTYPE Ship			
Supply Information		Transfer Information		Safety Zones (m)	
Supply Type	Road Tanker	Transfer Pressure	6 barg	1 R 1 21	H 10
Supply Storage Pressure	6 barg	ESD Activation	Fully Automatic	2 63	4
	No	Primary Leak Source	Hose	3 75	4
Supply Storage Temperature Known					
		Minimum Hose Elevation	0 m		
	38.7 MJ/m³(n)	Minimum Hose Elevation Hose Diameter	0 m		



The interpolations have been validated against

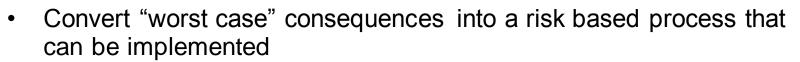
- Detailed gas dispersion models derived from full scale experiments on LNG and other cryogens at DNV GL's Spadeadam test site in the UK
- The interpolations have been compared against models used by other industry specialists
 - In ISO 20519

Validation

- Motorship 2016 Lloyds Register paper
- Accuracy is consistently within +/- 10%
 - Infrequent, larger inaccuracies mainly result from the simplistic assumptions made by the model on LNG composition

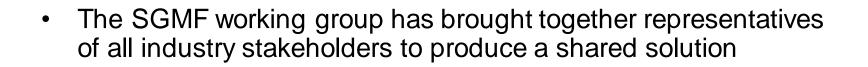
Learning points

- Gas clouds are not hemispherical they are hemi-ellipsoidal
- Different phenomena result in different mitigations:
 - Gas clouds produced by high/medium momentum leaks reach their maximum size within a few seconds
 - Low momentum releases form pools and are dominated by atmospheric effects which happen slowly and grow with time
 - ESD system (primarily leak detection) effectiveness depends on the leak scenario
 - System inventory (hose length, etc) has a limited impact as the gas cloud reaches its maximum dimension while gas is flowing prior to isolation
- A hose lying on the ground can only entrain air from above and the side limiting dispersion
 - Raise hose off the ground (30 cm / 1 foot +)
- Mass flow (hole size, pressure and flow) is the most important parameter
 - Without control measures safety distances can be large


Control measures

- LNG flow, pressure and temperature are set by commercial requirements
- Leak magnitude depends on the hole size
- What hole size should be used?
 - Flange and valve leaks well understood and hole size distribution available based on experience
 - Similar data on hoses absent: 8 10% of hose area often used
- What effects hole size?
- Handling and connection procedures and practices
 - Inspection of flanges, gaskets and hoses prior to use
 - Mechanical handling and bend limiters used on larger (>= 6 inch) hoses
- Cooldown rates and leak checking procedures
- Maintenance and storage procedures
 - Careful storage, use and maintenance should extend hose (fatigue) life and reduce the probability of failure
- Construction technology
 - Quick connectors vs flanges
 - Can double wall hoses leak? Is the failure scenario now a smaller leak from a flange?
- Training and professionalism of personnel involved

The next 3 months



- Use "expected" hole size as the risk parameter
- Define leak (hole) size based on operating/maintenance practices
 - Recommend flange leak sizes
 - One hose hole size (eg 10% of hose area) may not be realistic for all scenarios
- Provide guidance to regulators and industry participants on how hole size should be selected
 - Publish!
 - "Risked" consequence model will be made available via the SGMF portal free to members and as a service to others

- A physics based consequence model has been produced which allows all the key parameters in LNG bunkering to be investigated
- The consequence model is conservative design and operating practices are being examined to calibrate ("risk") the model (simultaneously encouraging good practice)
- The final model will be made available to the whole industry to encourage consistency and define minimum standards

we sea change, do you?

