Proceedings
 of the Marine Safety Council

U.S. Department of Transportation United States Coast Guard

Proceedings
 of the Marine Safety Council

Published monthly by the Commandant, USCG, in the interest of safety at sea under the auspices of the Marine Safety Council. Special permission for republication, either in whole or in part, with the exception of copyrighted artieles or artwork, is not required provided credit is given to the Proceedings of the Marine Safety Council. The views expressed are those of the authors and do not represent official Coast Guard policy. All inquiries and requests for subscriptions should be addressed to Commandant (G-CMC), U.S. Coast Guard, Washington, DC 20593; (202) 426-1477. Please include mailing label when sending in a change of address. The Office of the Secretary of Transportation has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this ageney. Use of funds for printing this publication has been approved by the Director of the Office of Management and Budget through March 31, 1985.

Admiral James S. Gracey, USCG Commandant

The Marine Safety Council of the United States Coast Guard;

Rear Admiral Edwin H. Daniels, USCG Chief Counsel, Chairman

Rear Admiral Bobby F. Hollingsworth, USCG Chief, Office of Marine Environment and Systems, Member

Rear Admiral H. W. Parker, USCG
Chief, Office of Boating, Public, and Consumer Affairs, Member

Rear Admiral Clyde T. Lusk, Jr., USCG Chief, Orfice of Merchant Marine Sefety, Member

Rear Admiral Norman C. Venzke, USCG
Chief, Office of Operations, Member
Rear Admiral R. S. Lucas, USCG Chief, Office of Engineering, Member

Fear Admiral Richard A. Beuman, USCC
Chief, Office of Navigation, Member
Rear Admíal K. G. Wiman, USCG
Chief, Offiee of Fiesearch and Development, Member

Captain Christopher M. Holland Executive Secretary

Julie Strickler Editor

DIST. (SDL No. 116)
A: acde(2); fghklmntuv(1) B: $n(50) ; e(16) ; e(5) ; f(4)$; $\mathrm{gj}(3) ; \mathrm{r}(2)$; bkig(1)
C: eglmp(1)
D: adgklm(1)
E: $m n(1)$
F: abedehjklogst(1)
List TCG-06

When you have finished rendirg this issue, please pass it on.

Contents

features

Guidance for the Unif orm Application of Certain Rules of the International Regulations for Preventing Collisions at Sea, 1972

Recommendations Concerning Safety in OBOs 32
Putting Logic into Licensing
by LCDR George N. Naccara 36
Statisties of Casualties Fiscal Year 1980 45
departments
Maritime Sidelights 27
Keynotes 28
Chemical of the Month 31
Nautical Queries 34
Lessons from Casualties 35

cover

Licenses to engage in Merchant Marine occupations are granted only to those who demonstrate competence; this is one of the Coast Guard's means of promoting safe ship operation. The present licensing system, however, developed in a haphazard way and is confusing and restrictive. The Coast Guarct's new license structure will simplify licensing procedures and establish career patterns for mariners. An article describing the proposed system begins on page 36 .

Metal Fires on Ships Subject of Report

A recently released report describes potential hazards in the marine transport of bulk cargoes of ferrous metal.

The report, "Ferrous Metal Fires," discusses measures for monitoring and preventing the spontaneous overheating of such cargoes and was prepared for the Coast Guard by the National Research Council, Sational Materials Advisory Board, Committee on Maritime Hazardous Materials.

The study describes how such fires occur and reviews cethods for intervening in a
case of excessive heating of a cargo in a ship's hold. Thomas B. King, chairman of the Department of Metallurgy at the Massachusetts Institute of Technology, headed the panel responsible for the report.

Copies of the report can be ordered for $\$ 9$ each from the National Technical Information Service, Springfield, Virginia 22161. Order No. PB 82263161 should be specified.
(An article on this subject, "Too Many Fires in the Iron," by John F. McAnulty, appeared in the September/ October 1982 issue of the Proceedings.)

Help in Preparing Documentation is on the W ay

Are you confused about your packaged Hazardous Materials/Dangerous Goods export shipments? Do you need some assistance in preparing the shipping papers required by Part 172 of Title 49 of the Code of Federal Regulations and/or the International Maritime Dangerous Goods (IMDG) Code? A new brochure may be just the answer.
"Hazardous Materials/ Dangerous Goods Documentation of United States Export Shipments by Water" should be available by the time of this printing from the National Committee on International Trade Documentation (NCITD), 350 Broadway, Suite 1200, New York, New York 10013; tel.: (212) 925-1400. The cost of a single copy is $\$ 2.50$ (add $\$.60$ for postage and
handling).
A guide to proper documentation, the brochure contains many useful examples of properly prepared shipping papers. In addition, it explains how to use the Optional Table (49 CFR 172.102). The NCITD brochure could be of tremendous assistance to shippers, freight forwarders, brokers, and carriers. We ask that you let potentially interested non-Proceedings readers know of its existence.

Such a guide can serve its purpose only if you are working with up-to-date regulations. Your copy of Title 49 of the CFR should read "Revised as of October 1, 1981." Also, you should be aware that the 19th amendment to the IMDG Code became effective November 1, 1982.

Safety and Maneuverability of Mississippi Tows Studied

HY DRONAUTICS, Incorporated, a hydronamics research firm based in Laurel, Maryland, is currently studying the maneuverability and navigational safety of typical river tows in the Upper Mississippi River. This project is jointly supported by the Coast Guard and the U.S. Army Corps of Engineers.

The study includes extensive model tests in open and restricted waters, including tests with modeling of submerged wing dams, which were used in the past to narrow the navigation channel and which are an important factor in the Upper Mississippi River. The resulting test data will be used to simulate and study river tow maneuvering and safety, as a function of water depth, for the stretch of river between Lock and Dams 3 and 4. This section of the river has been identified by the Corps of Engineers as one having particular navigation difficulties and as being particularly prone to siltation.

A final report on the project is scheduled to be delivered to Coast Guard Headquarters in late September 1983.

NOAA Reports on Deep Seabed Mining

The Deep Seabed Hard Mineral Resources Act was signed into law on June 28, 1980. This act charged the National Oceanic and Atmospheric Administration with developing a regulatory framework in which, ultimately, commercial recovery
of manganese nodules could proceed in an environmentally sound manner. The law also required NOAA to conduct a marine research program to support the regulation of mining activities, seabased nodule processing, and ocean disposal of processing wastes. "Deep Seabed Mining, Marine Environmental Research Plan 1981-85," prepared by NOAA's Office of Ocean Minerals and Energy, grew out of that research effort.

This first 5-year research plan is based on the results of previous research (the Deep Ocean Mining Environmental Study and numerous related studies), the results of many workshops, and comments and recommendations from academia, industry, the public sector, other Federal agencies, and state governments. It outlines the areas to be studied and the estimated costs associated with each program. Two objectives are identified as being critical to the research program:

- developing the capacity to assess environmental impacts related to deep seabed mining and at-sea processing and disposal, and
- developing the capability to predict and gauge the
extent of potential impacts so that, if necessary, mitigating strategies can be developed.

Copies of the report are available from NOAA's Office of Ocean Minerals and Energy, 2001 Wisconsin Avenue NW, Washington, DC 20235.

Seminar on Arctic Technology Scheduled at MIT

"Aretic Technology and Policy: An Assessment and Review for the Next Decade" is the title of the MIT Sea Grant conference to be held at the Massachusetts Institute of Technology March 2-4, 1983.

Two lectures will be held the opening day. R. Tucker Scully, Director of the Office of Oceans and Polar Affairs at the Department of State, will deliver the Sea Grant Lecture, "Arctic Policy: Opportunities and Perspectives." Ira Dyer, a professor in the Department of Ocean Engineering at MIT and chairman of the conference, will deliver "Scientific and Technological Challenges of the Aretic."

Among the topies to be covered the second and third days of the conference are arctic oceanography, arctic seismic exploration, ice mor-
phology, arctic climatolog. and modeling, engineering properties of ice, the legalpolitical regime of the arctic resource economics of the arctic, environmental consid erations in the aretic, arctic offshore technology, and icebreaking technology.

Further details and registration materials are available from Elizabeth Harding, MI Sea Grant Information Office 77 Massachusetts Avenue Cambridge, Massachusetts 02139; tel.: (617) 253-3461.

MarAd Releases Port Report

The Maritime Administratio has released the first of what is to be an annual report or the status of the public ports of the United States.
"A Report to the Congres on the Status of the Publid Ports of the United States describes problems which ocean and inland waterwas ports are experiencing as a result of technological changes, resource allocation, competition, environmental concerns inflation, and legislation and regulation at all levels of government.

Limited copies are avail able from MarAd's Public Affairs Office, 400 7th Street SW, Washington, DC 20590.

(1) Keynotes

The following items of general interest were published in the FEDERAL REGISTER between November 19, 1982, and December 20, 1982:

Final rules: CGD 8-82-02 Anchorage Regulations, Lower Mississippi River, November 26, 1982. CGD 80-069 Regu-
lated Navigation Area, New Haven Harbor, Vicinity of Tomlinson Bridge, correction, November 28, 1982. CGD 82018 Ports of Documentation, December 2, 1982. CGD 82102 General Bridge Locations and Clearance and Drawbridge Operation Regulations, De-
cember 2, 1982. CGD 11-82 09 Safety Zone in the Vicinit of National Steel and Ship building Company, Shipwa Four, December 2, 1982. CG 7-82-04 Drawbridge Operatio Regulations; Hillsboroug County, Florida, December 2 1982. CGD 7-82-09 Draw
bridge Operation Regulations; Lake Worth, Atlantic ICW, Falm Beach County, Florida, December 2, 1982. CGD 05-12-01 Safety Zone; Croatan Sound, North Carolina, Deeember 2, 1982. CGD 11-8201 Anchorage Grounds, Los Angeles/Long Beach, California, December 16, 1982.

Notices of proposed ruleraking (NPRMs): CGD 09-8215 Drawbridge Operation Regalations; Keweenaw Waterway, Michigan, November 26, 1982. CGD 8-82-01 Anchorage Grounds, Western Florida, December 2, 1982. CGD 01-12-015 Drawbridge Operation Regulations; Back Cove, Portend, Maine, December 9, 1982. CGD 81-067 Regulated Navigation Area, Ice Season, December 16, 1982. CGD 3-12-31 Anchorage Grounds, Delaware Bay and River, Dekember 20, 1982.

Questions concerning reguatory dockets should be directed to Commandant (GEMC), U.S. Coast Guard, Fashington, DC 20593; tel.: 202) 426-1477.

* * *

Cargo Monitors on Tank Vessels Carrying Oil in Bulk (CGD 76-088(b))

In 1977 the Coast Guard pubFished in the FEDERAL REGSTER proposed rules requiring the installation and use of eargo monitors on board tank ressels of 150 gross tons and over. These devices would aid in reducing oil pollution in perational discharges from tank vessels. The proposal applies both to U.S. seagoing vessels and to foreign vessels that call at U.S. ports.

The proposal stemmed
from U.S. ratification of the International Convention for the Prevention of Pollution from Ships, 1973 (MARPOL 73). The MARPOL Protocol requires the use of cargo monitors on seagoing tank vessels.

A Supplemental NPRM was published on December 20, 1982. That notice includes minor changes in the proposal made in response to comments received and sets the date by which equipment must be installed: October 2, 1983, the day the MARPOL Protocol enters into force. (Existing vessels will have a 3 -year grace period: for them, the effective date will be October 2, 1986.) The public will have 90 days from the date of publishing to comment on the revised proposal.

For further information, contact LT Jeff Lantz, Commandant (G-MVI-5), U.S. Coast Guard, Washington, DC 20593; tel. (202) 426-4431.

Actions of the Marine Safety Council

At its December meeting the Council considered a notice of proposed rulemaking for CGD 82-028:

Segregated Ballast, Dedicated Clean Ballast, and Crude Oil Washing on Tank Vessels of 20,000 DWT or More, But Less Than $\mathbf{4 0 , 0 0 0}$ DWT, Carrying Oil in Bulk

Section 5 of the Port and Tanker Safety Act of 1978 requires a combination of segregated ballast tanks, dedicated clean ballast tanks, and crude oil washing systems on all U.S.-flag 20,000- to $40,000-$

DWT tank vessels which will be more than 15 years old after 1985. The Act also applies to foreign vessels in this weight class trading in U.S. ports. This regulatory proposal would implement Section 5 of the Act.

The Coast Guard expects controversy over some aspects of the proposal, namely:

- The standards mandated by the Act are more stringent than those in the IMO international agreements;
- The Act was a unilateral U.S. action affecting the worldwide shipment of oil;
- The cost of compliance will be substantial;
- In the four-year period since the Act was passed, industry views have become polarized. The shipbuilding industry and those vessel operators who have invested in new construction in anticipation of the 1978 standards ${ }^{\prime}$ being implemented support the Aet's provisions. Those who have not yet made such an investment and foreign vessel owners who will need to upgrade their vessels to trade in U.S. ports oppose the measure.

The proposal, unanimously approved by the Council, is classified as "significant" because of the high compliance costs. Accordingly, it must be approved by the Secretary of Transportation before it can be published. Publication is expected this month or next month.

Guidance for the Uniform Application of Certain Rules of the International Regulations for Preventing Collisions at Sea, 1972

The following clarifications have been issued by the Maritime Safety Committee of the International Maritime Organization (IMO):

Clarification of the definition "Vessel constrained by her draft", Rule 3(h)

Not only the depth of water but also the available navigable water width should be used as a factor to determine whether a vessel may be regarded as constrained by her draft. When determining this, due account should also be taken of the effect of a small underkeel clearance on maneuverability of the vessel and thus her ability to deviate from the course she is following. A vessel navigating in an area with a small underkeel clearance but with adequate space to take avoiding action should not be regarded as a vessel constrained by her draft.

Clarification of the application of the word "underway", Rule 3(i)

When applying the definition of the term "underway" mariners should also have regard to Rule 35(b) where it is indicated that a vessel may be underway but stopped and making no way through the water.

Clarification of the implication of the words "not to impede" as appearing in Rules 9(b), (c) and (d), 10(i) and (j) and 18(d)

When a vessel is required not to impede the passage of another vessel, such vessel shall so far as practicable navigate in such a way as to avoid the development of risk of collision. If, however, a situation has developed so as to involve risk of collision, the relevant Steering and Sailing Rules shall be complied with.

Clarification of the relation between Rule 10 and the Rules of Part B, Sections II and III

A vessel navigating in or near a traffic
separation scheme adopted by the Organization shall, in particular, comply with Rule 10 of the International Regulations for Preventing Collisions at Sea, 1972, to minimize the development of risk of collision with another vessel. The other Rules of the 1972 Collision Regulations apply in all respects, and particularly the Rules of Part B, Sections II and III, if risk of collision with another vessel is deemed to exist.

Clarification of the transference within a lane, Rule 10(b)(i)

It is within the ordinary practice of prudent seamanship and in keeping with the provisions of Rule 10 of the 1972 Collision Regulations that a vessel using a traffic lane may make a transfer within a lane from one side to the other, provided such a transfer is accomplished at as small an angle to the general direction of traffic flow as is practicable.

Clarification on the use of inshore traffic zones by small vessels, Rule 10(d)

To comply with Rule $10(j)$ and for reasons of safe navigation a vessel of less than 20 meters in length or a sailing vessel, even when through traffic, may use inshore traffic zones.

Clarification of the relation between Rule 18(d) and the Rules of Part B, Sections II and III

A vessel constrained by her draft shall, when risk of collision with another vessel in a crossing or head-on situation exists, apply the relevant Steering and Sailing Rules as a powerdriven vessel. She should, when showing the signals prescribed by Rule 28, have her engines ready for immediate maneuver and proceed at a safe speed as required by Rule 6.

1,1,2-Trichloroethane:

$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

Synonyms:

Physical Properties

boiling point:
freezing point: vapor pressure at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$: $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$:
beta-T
beta-trichloroethane ethane trichloride vinyl trichloride
$114^{\circ} \mathrm{C}\left(237^{\circ} \mathrm{F}\right)$ $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$

19 mm Hg 40 mm Hg

Threshold Limit Values (TLV)
time weighted average:
$10 \mathrm{ppm} ; 45$ $\mathrm{mg} / \mathrm{m}^{3}$
short term exposure limit: $\quad 20 \mathrm{ppm} ; 90$ $\mathrm{mg} / \mathrm{m}^{3}$

Flammability Limits in Air*
lower flammability limit: upper flammability limit:
8.4% by vol. 13.3% by vol.

Combustion Properties
Standard tests in air indicate that 1,1,2trichloroethane is not flammable.

Densities

liquid (water $=1.0$)	1.44
vapor (air $=1.0$):	4.55
Kdentifiers	
CHRIS Code:	TCM
Cargo Compatibility Group:	36 (Halogenated

1,1,2-trichloroethane is "nasty stuff." It can kill humans and can "eat" aluminum, zinc, rubber, and various plastics and coatings. Its corrosive properties can be guarded against by using steel and stainless steel in the construction of tank systems. Its toxicity to human beings can be guarded against only by taking the proper precautions.
[1,1,2-trichloroethane should not be confused with the $1,1,1$-trichloroethane isomer (same chemical formula, slightly different structure). The $1,1,1$-isomer has very low toxicological properties-in fact, the U.S. Coast Guard has put it in the "non-regulated" category.]

1,1,2-trichloroethane exists at room temperature as a colorless liquid and has a sweet, chlorof orm-like odor. It is used primarily in the making of other organic (carbon-containing) compounds and as a solvent for oils, fats, waxes, and natural resins.

If allowed to remain on the skin, liquid $1,1,2$-trichloroethane will be readily absorbed. Although a single instance of exposure will generally not cause any damage if the affected skin is cleaned immediately, skin subjected to repeated or prolonged exposure will become irritated. Exposed skin should be promptly washed with soap and water. Contaminated clothing should be removed and laundered before being worn again. It may be impossible to decontaminate leather shoes that have absorbed large amounts of $1,1,2$-trichloroethane; if so, they should be discarded. If irritation continues af ter these measures, medical attention should be sought.

Ingestion (swallowing) of liquid 1,1,2trichloroethane will produce symptoms of moderate to severe poisoning. Victims of ingestion should be made to vomit immediately (only if conscious, of course). This can be accomplished by giving an emetic such us two tablespoons of salt in a glass of warm water or having the victim touch the back of his/her throat with a finger. An unconscious person should never be made to vomit.

The vapor of $1,1,2$-trichloroethane is highly toxic if inhaled. It can depress the central nervous system, causing narcosis (drowsiness, dizziness, eventually unconsciousness) to an even greater degree than chloroform. In high enough concentrations, it can cause respiratory arrest--and death. Laboratory animals repeatedly exposed to 1,1,2-trichloroethane vapor have suff ered liver and kidney damage.

Overexposure through inhalation (detectable by the symptoms of narcosis) should be treated by removing the vietim to fresh air and giving

* A high-energy source (such as an electrical charge) is necessary to ignite 1,1,2-trichloroethane.
artificial respiration, if needed. Medical attention should be sought at once.

In cases of eye exposure (either to the liquid or to high-concentration vapors), the eyes should be flushed immediately with large amounts of water, care being taken to also flush the areas under the upper and lower lids. If irritation persists, medical attention should be sought.

It is generally not advisable to wear contact lenses when working with chemicals that could cause any type of eye damage, since the chemical can become trapped between the lens and the eye. If the lens is not removed (as might happen if a victim is unconscious and cannot communicate with his rescuers), serious, even permanent eye damage could result. It is always a good practice to wear chemical goggles or a face shield.

Despite 1,1,2-trichloroethane's high toxicity, the National Institute for Occupations Safety and Health and the Occupational Safets and Health Administration have recorded nis cases of narcosis or liver and kidney damage in their monitoring of industrial operations. This demonstrates the effectiveness of the stringent precautionary measures taken by industry.

The U.S. Coast Guard regulates 1,1,2-tric chloroethane for shipment in bulk by tankship Part 153 of Subchapter O, Title 46, of the Cod of Federal Regulations. IMO, the Internation Maritime Organization, regulates it for buir shipment in Chapter 6 of its Chemical Code.

Cargo and Hazards Branch
Marine Technical and
Hazardous Materials Division

The International Chamber of Shipping (ICS) is a London-based organization representing national shipowners' associations. It is international in scope and has observer status within the International Maritime Organization (IMO). One of ICS' primary functions is to coordinate solutions to problems that affect shipowners on a broad scale. Part of the organization's work
consists of developing internationally recog nized publications which are used as guides standards of practice by both government ant industry. The brochure on avoidance of slaci tanks in ballast in OBOs (Oil/Bulk/Ore Cay riers), reproduced here, is but one example a ICS' efforts.

RECOMMENDATIONS CONCERNING SAFETY IN OBOs

THE AVOIDANCE OF SLACK HOLDS IN BALLAST

(Failure to observe these recommendations could endanger your ship)

Operations should be carried out in accordance with the guidance in the International Safety Guide for Oil Tankers and Terminals (ISGOTT).

The carriage of oily ballast in slack holds is hazardous.

A slack hold with clean ballast and a flammable atmosphere should be assumed hazardous.

Inert gas systems can fail, and tank atmospheres must be monitored.

For the purpose of these recommendations a "slack" hold is a hold in which the sounding of the liquid content is not into the coaming.

Slack Holds

It is particularly important for combinatic carriers to have their holds inerted, becaus whenever a hold in an OBO carrier (which could extend the full breadth of the ship) is partially filled with clean or oily ballast, surfac agitation of this ballast can oceur at smay angles of roll, and this can result in the genera: tion of static electricity. The agitation
sometimes referred to as "sloshing," and it can happen whenever the liquid level of the hold is not pressed up into the coaming.

NOTE

In drawing up this recommendation no account has been taken of possible structural damage caused by a sloshing effect; for information on this aspect the advice of Classification Societies should be sought.

FURTHER RECOMMENDATIONS

Gas-free Requirements

During loading, carriage, and discharging of solid cargoes, all holds/cargo tanks, non-inerted slop tanks, cargo pumprooms, cofferdams, duct keels, and other adjacent void spaces should be maintained in a gas-free condition. If, after 14 days, no hydrocarbon gas has been detected, frequency of monitoring may be reduced to every second day.

ANY LEVEL BELOW THIS POINT

CAN BE
hazardous

Slops

When cargoes other than oil are to be carried, slops should be dealt with as follows:

1. Slops should be discharged ashore and the slop tanks cleaned and ventilated to such a degree that the tanks are completely gasfree.
2. If slops are to be retained on board, they should be contained in a properly constituted slop tank and inerted.
3. The ICS strongly recommends that owners make every effort to comply with paragraph 1 after one voyage if the vessel is to continue trading in dry bulk cargoes.

Further guidance on safe operations in combination carriers and the use of Inert Gas can be obtained from the following publications:

- The IMO publication "Inert Gas Systems for Oil Tankers (Revised Regulation 62 of Chapter II-2 of the International Convention for the Safety of Life at Sea, 1974 and Guidelines for Inert Gas Systems)" and
- The ICS/OCIMF (International Chamber of Shipping/Oil Companies International Marine Forum) publication "International Safety Guide for Oil Tankers and Terminals."

The ICS recently joined with the OCIMF to publish a guide for masters whose vessels are in peril. Subjects covered are: assistance, communications, casualty reports, evaluation of situation, action when ship is disabled but not aground, towing, transfer of cargo, action when ship is aground, and legal matters. Also incorporated into the guide are the results of ship drifting research and a series of transparent overlays to help masters assess drift. Research has shown that much can be done to influence not only the rate but also the direction of drift-up to 110° or more, depending on ship type and condition of loading.

Peril at Sea and Salvage--A Guide for Masters is available from Witherby \& Co., Ltd., 32/36 Aylesbury Street, London EC1R OET for £ 7 a copy (includes surface mail).

A comprehensive list of ICS publications will be published in the Proceedings as soon as a list of prices in U.S. dollars becomes available. \ddagger

The following items are examples of questions included in the Third Mate through Master examinations and the Third Assistant Engineer through Chief Engineer examinations:

DECK

1. Frapping lines are fitted to lifeboat davits to
A. reduce the swinging of the lifeboat as it is being lowered from the embarkation level.
B, secure the lifeboat in the davits when it is in the stowed position.
C. hold the lifeboat to the ship's side until the tricing lines are passed.
D. be used as a safety line in an emergency.

REFERENCE: AMSM
2. Bulkheads or decks of the "A" class shall be composed of steel or an equivalent metal and shall be suitably stiffened and made intact with the main structure of the vessel. They shall be so constructed that, if subjected to the standard fire test, they would be capable of preventing the passage of flame and smoke for

[^0]A. 5 minutes.
B. 10 minutes.
C. 30 minutes.
D. 60 minutes.

REFERENCE: 46 CFR 92.075(b)
3. The sextant altitude error resulting from hs' being measured from the earth's surface and Ho's being calculated from the earth's center is called
A. refraction.
B. augmentation.
C. semidiameter.
D. parallax.

REFERENCE: Bowditch, Navigation Dictionary
4. The only person that can authorize alternate stowage of a hazardous material is
A. a representative of the National Cargo Bureau.
B. a qualified U.S. Coast Guard Marine Inspector.
C. the U.S. Coast Guard Captain of the Port.
D. the local representative of the shipper.

REFERENCE: 49 CFR 176.65
5. On the high seas, a fog signal consisting of one prolonged blast followed by four short blasts would indicate the presence of a
A. vessel being towed.
B. fishing vessel engaged in trawling.
C. vessel at anchor warning of her location.
D. power-driven pilot vessel on station underway.

REFERENCE: COMDTINST
M16672.2

ENGINEER

1. An all-purpose nozzle on a firehose under pressure is most difficult to control when changed from
A. solid stream to fog.
B. shut-off to solid stream.
C. low- to high-velocity fog.
D. fog to shut-off.

REFERENCE: MarAd Fire-
fighting
2. A Class C fire would be burning
A. clothing.
B. wood.
C. hydraulic fluid.
D. switchboard insulation.

REFERENCE: MarAd Firefighting
3. A fire may be extinguished by
A. removing the heat.
B. eliminating the fuel.
C. excluding the oxygen.
D. any of the above.

REFERENCE: MarAd Fire fighting
4. Which extinguisher would be effective in an electrical fire and would not leave residue on equipment?
I. $\quad \mathrm{CO}_{2}$
II. Halon 1211
A. I only
B. II only
C. Either I or II
D. Neither I nor II

REFERENCE: MarAd Firefighting
5. The principal difference between the high-velocity tip and the low-velocity applica-
tor used with the all-purpose nozzle is the
A. difference in available water pressure.
B. number of personnel required to effectively use each of them.
C. degree to which the water stream is broken up.
D. ability to exclude free oxygen.

REFERENCE: MarAd Firefighting

ANSWERS

\&GUNIDNG

Яวมฮ

Lessons from Casuaties

Another Cold-water Drowning

The final report of the last moments of another fisherman has been received at Coast Guard Headquarters. The details have an all-toofamiliar ring. The weather was not bad, 15- to 20 -knot winds and 3 - to 5 -foot seas. It was cold, $2^{\circ} \mathrm{F}$, and there was slush ice on deck. The vessel was a new 40 -foot, 25 -gross-ton stern dragger.

Two crewmen were on the work deck aft, preparing to set the fishing gear. They were getting ready to release the 570 -pound trawl doors from the brackets in which they were secured for transit. The brackets were on opposite sides of the vessel between the 18 -inch bulwark and a leg of the gallows frame holding the net roller. One of the three chains securing each door, the backstrap chain, was on the outboard side of the stowed door. Sometimes the backstrap would foul on the outboard side of the door and a crewman would have to reach around to release it.

On this day in January 1982, the backstrap chain probably fouled. The master of the vessel was watching the two crewmen prepare the doors for release when he turned to the compass for a moment and made a small course correction. This took three or four seconds. As he turned back to the stern, he saw a "flash of yellow" going over the side out of the corner of his eye. The master yelled at the other man on deck, yelled to the cook to get a life ring, and backed the vessel to a distance of about seven feet from the man in the water. Within two minutes or so, the man in the water was alongside and being held. He was too heavy to be pulled over the bulwark, and several attempts to get him aboard were unsuccessful. After about 10 minutes, the man in the water
lost consciousness. The man on deck was losing the ability to use his hands in the cold (he was later treated for severe frostbite of the hands). The master went below, got an inflatable life raft, and launched it next to the man in the water. The master went into the raft, dragged the man in, and then used the fishing vessel's cargo boom to lift the man aboard.

Nobody on board the fishing vessel had been trained in cardiopulmonary resuscitation (CPR) or first aid. A Coast Guard emergency medical technician (EMT) advised the crewmembers by radio how to care for the man until they could get into the lee of an island and transfer the man to a Coast Guard helicopter. The man was pronounced dead on arrival at a hospital. The cause of death was listed as drowning and hypothermia.

Two lessons can be learned from this casualty.

First, all persons working at sea need training in first aid and CPR. There is no rescue squad at the corner fire station at sea. Hypothermia training is also very valuable, even in mild climates, because most sea water is considerably below normal body temperature.

Second, hazards of design must be removed. The backstrap chain, which had been in operation only a few weeks, was known to occasionally become fouled on the outboard side of the trawl door. It was apparently not an unusual event. This arrangement should have been examined to eliminate the fouling or in some other way eliminate the need for a crewman to reach outboard to unfoul the chain. This particular trawl door hazard may be limited to this vessel design, but all working vessels have potential hazards which should be of concern to masters and owners as well as crewmembers who are directly exposed to them.

Putting Logic into Licensing

by LCDR George N. Naccara
Merchant Vessel Personnel Qualifications Branch

> While the Coast Guard's licensing system has served its purpose of maximizing safety in ship operations, some of its features have made it the target of criticism. The following article explores the system and explains the changes being proposed by the Coast Guard.

Studies have indicated that at least 85 percent of all reported vessel casualties are the direct result of human error. If we include the category of pure machinery or structural failure, which may be indirectly the result of human error, the total is raised to nearly 100 percent. Therefore, the need to ensure some level of competence in the officers who operate and guide vessels is of paramount concern.

The Coast Guard is mandated by law to promote the safety of life and property on the waters of the United States. Certainly one of the most important aspects of its mandate is its efforts to ensure the overall competence and minimum qualifications of the personnel who serve aboard merchant vessels. The Coast Guard does this through its licensing program. A license, in fact, has been described as a "certificate of competence."

Licensing is a generic term which encompasses all forms of regulation that give the license holder legal authority to engage in his occupation. In our case, that means the Merchant Marine officer serving on a commercial vessel of the United States. The need for safety in public transportation is so obvious that everyone is quick to recognize the need for maintaining checks on the capabilities of those who fly airplanes, drive buses, or navigate ships. While licensing certainly restricts the freedom of the individual, it is intended to
serve the overriding purpose of protecting the health and safety of the public and the marine environment.

The Coast Guard system is a mandatory licensing program rather than a voluntary certification system. Under this mandatory program, a person may not engage in a Merchant Marine occupation unless he or she has been authorized to do so by the Coast Guard. maintain that these occupations are so closely associated with public health and safety that, without some form of regulation, the public and the environment would have little or no protection against incompetent practitioners who might do serious harm. Only those found to be competent are granted licenses. Anyone seeking the services of a licensed individual will have at least some assurance that such a practitioner was deemed by the Coast Guard to possess the necessary minimum amount of competence at the time he or she was granted a license.

The U.S. System

The licensing of deck and engineer officers for the U.S. Merchant Marine has been the responsibility of the U.S. Coast Guard since 1942. Before that, it was the responsibility of the Bureau of Marine Inspection and Navigation in the U.S. Department of Commerce.

There are numerous laws governing the licensing of Merchant Marine personnel. These laws are supplemented by Coast Guard regulations and policy as contained in Titles 33 and 46 of the Code of Federal Regulations.

In addition to our domestic laws, there are international conventions which affect the licensing and certification of personnel (the SOLAS Conventions, the Officers' Competency Convention, etc.). The Maritime Safety Committee of the International Maritime Organization (IMO) established a Subcommittee on Standards of Training and Watchkeeping in 1971. Its objective was to develop universally acceptable standards to improve training and strengthen the professional qualifications of seafarers. The result of its work was the subject of an international conference in 1978, the aim of which was to establish a minimum standard of competence for ships ${ }^{1}$ of ficers. While the Standards of Training, Certification and Watchkeeping for Seafarers, 1978 (STCW) Convention has not yet been ratified by the United States, it has been a prime consideration in the Coast Guard's planning and has had an obvious impact on the design of the Coast Guard's new licensing structure.

Licenses are presently issued through 16 regional examination centers located in major maritime centers across the U.S. There are also three monitoring facilities which provide proctors for license examinations. The regional examination centers were created during the past year to further increase the efficiency of the Coast Guard's overall licensing and certification process. This has been accomplished by reducing the number of licensing offices from 49 to 16 , assigning experienced personnel to the offices, and streamlining procedures. The licensing program is supervised by the Merchant Vessel Personnel Division to which I am assigned at Coast Guard Headquarters in Washington, DC.

Generally speaking, there are two major categories of Merchant Marine officers: deck and engineer. There are also subspecialties, such as operator of uninspected towing vessels, motorboat operator, radio officer, etc. The deck officers normally stand watches on the bridge of a vessel and are responsible for the safety and navigation of a ship. This includes responsibility for radar, shiphandling, navigation, observing the Rules of the Road, cargo stowage and handling, and understanding emergency procedures and related rules and regulations. Engineer officers also have watchstanding responsibilities. The chief engineer and his
assistants, all of whom are licensed to function at various levels, are responsible for the main propulsion system of a ship and all the auxiliary systems, including electrical power, water, firefighting systems and equipment, and all of the ship's machinery. Both deck and engineer officers supervise unlicensed personnel, who carry out a wide variety of functions on board a ship. These unlicensed personnel, usually mariners with less experience and training, perform tasks normally associated with lower levels of responsibility.

The Drawbacks of the Present Structure

The existing licensing regulations have been developed over many years. The present system has evolved in a haphazard, uncoordinated, and of ten chaotic way. The conditions which originally led to the need for particular licenses have changed over the years, yet the license system itself has not been adaptable and has become more fragmented than ever. Many new sections and licenses have been created which detract seriously from the uniformity of the overall scheme.

The present structure is so complex that it defies logical interpretation. Separate licensing categories have been created for oceans, coastwise routes, inland waters, the Great Lakes, and Western Rivers routes. Licenses have varied according to the vessel's tonnage, the type of cargo carried, the segment of the industry being served, the type of propulsion system, and the total shaft horsepower of the vessel, as well as whether or not the vessel was Coast Guard-inspected. There are presently over 40 different masters licenses, nearly 40 different mates licenses, innumerable pilots licenses with various route combinations, and over 30 different engineer licenses, in addition to those for the subspecialties. While the Coast Guard created these licenses in response to laws passed by Congress, it is obvious that many of them are the result of administrators' interpretation of the statutes. It is also obvious that Congress and the Coast Guard have been subjected to pressure from a variety of specialinterest groups. This has led to the creation of many special licensing categories to accommodate particular needs.

All of these factors have led to some of the most frequently heard criticisms of the licensing system: there are no career patterns, and there is no logical progression from one license category to another, from one tonnage category to another, or from one segment of the industry
or geographical area to another. These obstacles to personal mobility are a major shortcoming of the present system and certainly affect safety in an indirect manner. Experienced mariners of ten leave their careers when they find that employment opportunities are limited and their licenses are not adaptable to other segments of the industry.

The Coast Guard's New System

The Coast Guard is now in the process of setting up a new license structure. Its intention is to establish career patterns, simplify the license structure for ocean and inland service, delete many of the trade-restricted licenses, and simplify the license procedures by redesigning the format of the regulations. In essence, these new regulations will provide a license structure which will permit an experienced, knowledgeable, and ambitious person to advance in the maritime industry with a minimum of restrictions.

The new license structure will promote personal mobility throughout the industry. The Coast Guard will accept toward most license levels a certain amount of service on vessels of lower tonnage or horsepower than it has in the past. This will enable Merchant Marine personnel to serve on various smaller vessels in specialized industries, such as the mineral and oil industry or the towing industry, and will not penalize them by denying use of this time toward license upgrading. Another example is the acceptance of cross training for deck and engineer licensed personnel. This will enhance safety by giving marine personnel a better perspective of the operations of the deck and engineering departments. Acceptance of a percentage of a person's experience as an engineer toward a deck license and vice versa will assist that person in many ways (he will not be penalized by loss of creditable time) and will allow management more freedom in planning the work for a vessel on each voyage.

There will be a clear progression for virtually all deck and engineer licenses. The inland licenses are to be separated from the ocean licenses, and there will be progressions from inland to ocean waters. Tonnage categories have been established as $0-200,200-1,600$, and unlimited above 1,600 gross tons. Master/ mate and chief engineer/assistant engineer systems are being established where appropriate. All trade-restricted, route-restricted, or ton-nage-restricted licenses have been removed from the progression, and the career pattern
has been made much clearer and easier for mariners to follow. This fact alone shoul= promote personal mobility within the industry and the long-term result will be an increase confidence and an increase in safety. The new structure should allow people to pursue longe careers in the Merchant Marine because ther will be able to change from one segment of the industry to another without losing any creditable service.

In the lower tonnage category of vessels the Coast Guard has altered the license progression so that operators and ocean operators will become masters and mates. These licenses will also be extended to a 200 -gross-tons limiz to conform with international conventions. The Coast Guard feels that this, too, will enhance mobility throughout the industry and will certainly broaden the career prospects of the operator or ocean operator. The new position of mate will also solidify the master's responsibilty of command and will provide him with ε^{-} interim experience level between deckhand an: master. As far as safety is concerned, the master will also have a relief watch officer or board vessels where manning requires a maste* and mate.

License Qualifications

Industry experience and practice are the principal sources for establishing qualifications for licensed personnel. A wide spectrum of knowledge and experience involving many types of ship operations, many different technologies, and many levels of experience must be considered. Three trends are evident in the qualificetion process:

- the changing characteristics and types of commercial vessels,
- new technical specialties in ship operstions, and
- the increased emphasis of formal training as opposed to on-the-job training and experience.

These trends point to a growing need for a broadbased education and a knowledge of technical and administrative subjects. As ships grow more specialized and complex, training and tested performance will become increasingly important. A major issue in the field or qualifications will then be the role of the maritime educational system. The emphasis on
education is illustrated by the Coast Guard's growing practice of accepting certification from approved training courses in place of experience and, in some cases, examinations. There are now over 50 institutions offering nearly 100 approved courses that can be used in lieu of examinations and experience. The Coast Guard has also been considering the use of performance tests such as those done with simulators. A requirement for simulator training is a possibility, as this is one of the few methods that allow the Coast Guard to evaluate actual experience. Unfortunately, the tremendous expense of simulator training has made that type of training impractical for most mariners. Use of this training aid typically costs nearly $\$ 2,000$ per week per person. However, since the Coast Guard realizes the value of simulator training, it is prepared to accept simulator work as a partial substitution for service requirements for licenses.

Under the Coast Guard's new system, professional examinations will be limited to entry and command levels. The entry-level examinations will stress technical knowledge and skills, and the command-level examinations will stress administrative and career skills. This twoexamination approach to licensing will certainly place greater emphasis on initial educational qualifications. The Coast Guard Institute, which prepares all license examinations, was recently advised to tailor future examination questions to emphasize casualty avoidance and control; this, too, should lead to safer operation of ships. All Merchant Marine licenses are to be issued for a period of five years, and the Coast Guard will require all deck and engineer officers to complete a comprehensive openbook exercise covering many aspects of their responsibilities as a condition for renewal of their licenses. This should ensure that a minimum level of proficiency is maintained among licensed officers.

The Rationale Behind Licensing

A basic question often asked is whether licensing should be done at all. Simply stated, the purpose of licensing is to ensure that all officers have a minimum level of competence to fulfill the duties and responsibilities associated with their particular level of license. The Coast Guard licensing system can be described as a program which is aimed at an objective assessment of each applicant. Never is a licensing decision left to an employer who may have a vested interest in the outcome. In every

State-of-the-art technology allows simulators to provide lifelike, computer-generated images from the "bridge." The simulator shown here belongs to CAORF, the Computer Aided Operations Research Facility, at the U.S. Merchant Marine Academy in Kings Point, New York.
mode of transportation where safety is entrusted to and dependent on the performance of an individual, society has elected to require that a person meet certain standards and obtain a license as evidence of this minimum capability. This is certainly true in the maritime industry. The principal tasks of the licensing program are the establishment of qualifications, the subsequent evaluation of each individual's application, and the preparation and administration of examinations. Qualifications include such items as physical evaluation standards, character standards, professional experience requirements, minimum age requirements, citizenship requirements, and particular types of training or education.

The Coast Guard can stress saf ety and competence, but it cannot control the operations of each particular vessel. A vessel employed in one industry may be totally different from a sister vessel employed in another segment of the industry, as far as equipment and operating conditions are concerned. The qualification and examination process that the Coast Guard administers is only a brief and minimum review of the basic knowledge which the Coast Guard considers necessary for safely operating a vessel. We make no claim that our examinations are all-encompassing tests on seafaring. We realize that the ingenuity, motivation, and knowledge of an individual more accurately determine the success and the safety of ship-

Text continued on page 44

Deck License Structure

ENTRY LEVEL

Special Deck License Structure

Engineer License Structure

Entry Level
board operations. As a final note, an excerpt from a paragraph in the new proposed regulations best typifies the Coast Guard's approach:
> "These regulations do not specify or restrict licenses to particular types of service such as tankships, freight vessels, or passenger vessels. However, it is incumbent on every licensed officer to become familiar with all unique characteristics of each vessel served upon as soon as possible after reporting aboard for duty. As appropriate for a deck or engineer license, this includes but is not limited to: Maneuvering characteristics of the vessel; proper operation of the installed navigation equipment; firefighting and lifesaving equipment; stability and load-
ing characteristics; and main propulsion and auxiliary machinery."

This general familiarity, combined with a certain level of experience, knowledge, and perseverance, forms the basis for safe operation of ε vessel, whether it's a 15 -foot motorboat or ε 200,000 -gross-ton tankship.

As this issue was going to press, a notice of proposed rulemaking on the new license structure was on its way to the FEDERAL REGISTER. Interested parties will have 120 days to comment from the date the NPRM is published. Comments received in response to an advance notice of proposed rulemaking published in October 1981 were generally supportive of the new structure.

Requirements/Qualifications for Licenses under the New Structure

1. Minimum age - a person who has reached the age of 21 years is eligible for all licenses. Some of the licenses restricted to certain vessel tonnages or routes of operation may be issued to people 18 or 19 years of age.
2. Citizenship - no license shall be issued to any person who is not a citizen of the U.S. (with the exception of licenses for motorboat operators limited to state-numbered vessels).
3. Physical examination - all persons applying for their initial licenses shall be required to pass an examination given by a licensed physician. This examination shall attest to the applicants' acuity of vision, color sense, and general physical condition. When renewing their licenses, the applicants shall again be tested for color vision and general physical condition.
4. Character check and references - a person applying for his initial license must present endorsements from a master and two other licensed officers on a vessel on which he or she may have served. Applicants for initial licenses are also checked by various law enforcement agencies.
5. Experience or training - all applicants for licenses shall present certain minimum quali-
fying experience for each type of license. Experience requirements for Coast Guardissued licenses range from six months (for a license for a mate on a small passenger vessel) to six years (for a master unlimited license upon the oceans). In the new regulations, experience requirements have been changed rather dramatically. Requirements for total cumulative service will remain unchanged, but the new system will be more flexible in allowing service on different types of vessels and in different waters to be applied toward license levels and categories. In some cases, experience as an engineer will be applicable toward a deck license and vice versa.
6. Recency of service - persons applying for their initial licenses shall have accumulated at least three months of their required service within the past three years.
7. Firefighting certificate - candidates for certain deck licenses and engineer licenses must present a certificate of completion from an approved firefighting course.
8. Professional examination - examinations are required for entry and command levels of all licenses.

Statistics of Casualties Fiscal Year 1980

Each year the U.S. Coast Guard prepares a statistical summary of the commercial vessel casualties that were investigated by Coast Guard marine investigators during the previous fiscal year.

The public, the industry, and the Coast Guard have used the findings of the investigations to establish standards and determine the need for legislation to improve the protection of safety of life and property at sea.

The master of a vessel is required by law to report a marine casualty as soon as possible after its occurrence to the Officer in Charge, Marine Inspection, at the Marine Inspection Office or Marine Safety Office in the Coast Guard District where the casualty occured.

The following summary represents casualties for which reports were received at Coast Guard Headquarters in Fiscal Year 1980, which ran from October 1, 1979, to September 30, 1980. In 1980 casualties involving commercial vessels were required to be reported to the Coast Guard whenever the casualty resulted in any of the following:

- actual physical damage to property in excess of $\$ 1,500$;
- material damage affecting the seaworthiness or efficiency of a vessel;
- stranding or grounding (with or without damage);
- loss of life; or
- injury causing any person to remain incapacitated for a period in excess of 72 hours, except injury to harbor workers not resulting in death and not resulting from vessel casualty or vessel equipment casualty.

These criteria have since been changed. Under the new criteria, any accident involving the following must be reported:

- an accidental grounding or an intentional grounding which also meets any of the other reporting criteria or creates a hazard to navigation, the environment, or the safety of the vessel;
- loss of main propulsion or primary steering, or any associated component or control system, the loss of which causes a reduction of the maneuvering capabilities of the vessel. Loss means that systems, component parts, sub-systems, or control systems do not perform the specified or required function;
- an occurrence materially and adversely affecting the vessel's seaworthiness or fitness for service or route, including but not limited to fire, flooding, or failure of or damage to fixed fire extinguishing systems, lifesaving equipment, auxiliary power generating equipment, or bilge pumping systems;
- loss of life;
- injury causing a person to remain incapacitated for a period in excess of 72 hours; or
- an occurrence not meeting any of the above criteria but resulting in damage to property in excess of $\$ 25,000$. Damage includes the cost of restoring the property to the service condition which existed prior to the casualty, including the cost of salvage, gas freeing, and drydock. It does not include such items as demurrage.*
* As this issue was going to press, a final rule was being readied which will delete the cost of salvage, gas freeing, and drydocking from the reporting criteria. This change is being made on the recommendation of the Towing Safety Advisory Committee.

The statistical summary on the following pages represents casualties to commercial vessels which met the 1980 criteria. [Statistics concerning recreational boating accidents are published separately. "Boating Statisties 1981," (COMDTINST M16754.lC), covering the calendar year 1981, can be ordered from Commandant (GBP), U.S. Coast Guard, Washington, DC 20593.]

The summary also includes those casualties serious enough by reason of dollar damage or death/injury to personnel to warrant the convening of a Marine Board of Investigation (specifically, the collision between the U.S. Coast Guard Cutter CUYAHOGA and the Argentine M/V SANTA CRUZ on Chesapeake Bay, which oceurred October 20, 1978; this collision resulted in the loss of 11 lives).

Every event involving a vessel or its personnel which meets any of the conditions of a reportable casualty is of great concern to the Coast Guard. A number of reportable casualties are not investigated by the Coast Guard
simply because they are not reported. Thus, it is of the utmost importance that the masters of all vessels ensure that all casualties are reported and investigated. With the cooperation of the masters, owners, and agents of commercial vessels, many of the unreported easualties can be investigated.

This statistical tabulation is intended to summarize the casualty experience for the entire commercial fleet. Because the summary is so all-encompassing, use of the statistics may lead to erroneous conclusions if the limitations of the data are not well understood. The Information and Analysis Staff of the Office of Merchant Marine Safety will gladly assist in quantifying those limitations for each specific need.

Comments and recommendations for changes or improvements in the statistics should be addressed to Commandant (G-MA/15), U.S. Coast Guard, Washington, DC 20593.

Abbreviations

The following abbreviations were used in the column headings for the first five charts:

Full heading	Abbreviation	Explosion and/or firestructure, equipment, all others	Exp a/o fire: stru, equip, other
Collision: crossing, meeting, and overtaking	Coll: crossing	Grounding with damage to vessel	Gnd: damage to ves
Collision while anchored, docking, or undocking	Coll: anchored	Grounding without damage to vessel	Gnd: no damage to ves
Collision: fog	Coll: fog		
Collision with piers and bridges	Coll: piers	Foundering, capsizing, and flooding	Foundering, cap, flood
Collision: all others	Coll: other	Heavy weather damage	Heavy wea. damage
Explosion and/or fire-cargo	Exp a/o fire: cargo	Material failure-structure and equipment	Mat fail--stru \& equip
Explosion and/or firevessel's fuel	Exp a/o fire: ves fuel	Material failure-machinery and engineering equipment	Mat fail-mach \& eng equip
Explosion and/or firepressure vessels, boilers	Exp a/o fire: pressure ves	Casualties not otherwise classified	Casualties not classified

			Number of casualties Number of vessels involved Number－－inspected vessels involved Number－－uninspected vessels involved	
				Coll：crossing
				Coll：anchored
$0 \sim 00000000000$	ONGOロ		「い吹つ	Coll：fog
	NN亮世N			Coll：piers
				Coll：other
䋞000w0000000	ONNOO		にちへN	Exp a／o fire：cargo
$\stackrel{H}{\omega}$	00w00		NowN	Exp a／o fire：ves fuel
$1 \sim 000001000000$	＇OMOO		い O N゙心	Exp a／o fire：pressure ves．
丐000w	MNOO		号会第盆	Exp a／o fire：stru，equip， other
	$a \text { 柋a }$		QNEN	Gnd：damage to res
			$\begin{aligned} & \text { Nu N } \\ & \text { N } \\ & \infty \end{aligned}$	Gnd：no damage to ves．
	い見㞻い。		会的哥劣	Foundering，cap \＆flood
1000000000w00	00000		Namor	Heavy vea．damage
000000000000	00000		0000	Cargo damage
	やのにっ。		式式忒吕	Hat fail－stru \＆equip
ふNoru ึ̃ocoovro	－ 0 Or		合式号品感	Kat fail－mach \＆equip
	ー心憂っか			Casualties not classified
			ƠNOU	Total

	※8\％忥鿖		呺喣	＝	coll：crossing
					Co11：anchored
Oのnwu	onoan	－NNOL	NNNA	roroonmo	Coll：fog
			崽む忥	二ッ咜ぎぎちら	Coll：pters
		¢ ¢ ¢upue	苂ざ歇	Nnロ゚NNEが	Coll：other
－awiot	nonvins	－Noun		－ourowoo	Exp a／o fire：cargo
－w\％ov	－wowa	WWNTE	UNWm	ooorroro	Exp a／o fire：ves fuel
ONuns．	ODNNO	OONH	n＋oo	ooowonor	Exp a／o fire：pressure ves．
忒いいらす。	ちNのが莈	※ちごら馬		Uncontuon	Exp A／O fire：stru，equip，
				ロー気Nさざさの	Gnd：damage to ves
			运縎芯		Gad：ao damage to ves．
	※ちの参呂	セちごす		5rusanmor	Foundering，cap \＆flood
oranu	OWmo	Owwoo	－－oo	m－ororoo	Reavy vea．damage
00000	00000	00000	0000	00000000	Cargo damage
	の氝心发		諗哭		Mat fall－stru 6 equip
			すぇゅữ		Mat fail mach \＆equip
の゙ッず	บ゙ッが岕		氙む\＆		Casualties not classified
			式絇骂		Total

	参		（000\＄）Sassot aaivwilsa	$\begin{aligned} & \text { Daylight } \\ & \text { Nighttime } \\ & \text { Twilight } \\ & \text { Other } \end{aligned}$	TIME OF DAY			
N0		$\begin{aligned} & \text { fr } \\ & \text { N } \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		$\infty \text { 品皆年 }$				Coll：crossing
感上								Coll：anchored
00		No 范		ONa＊		OOOONートONー		Coll：fog
感。								Coll：piers
$v \omega$		$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		w w M N				Coll：other
NN				ーロ゙いが，		OんロN゙ローんいい		Exp a／o fire：cargo
＋		$\text { HiN } \stackrel{\stackrel{\rightharpoonup}{\omega}}{\sim}$		ON\＆゙		－OルロNにいトのの		Exp a／o fire：ves fuel
00		$0 \stackrel{H}{\infty}_{\stackrel{\omega}{\infty}}^{2}$		$00 \sim \infty$		OOONートMON゙		Exp a／o fire：pressure ves．
シै				$\infty \stackrel{N}{\infty}$				Exp a／o fire：stru，equip， other
念				ज客合				Gnd：damage to ves
$\bigcirc 0$		WN Nos						Gnd：no damage to ves．
$\stackrel{N}{N}$		$\begin{array}{r} \text { u } \\ 0 \text { ज } \\ \text { ong } \\ \text { and } \end{array}$		wむ気出				Foundering，cap \＆flood
00				NONN		OOOロートwOOに		Heavy wea．damage
00		000		0000		0000000000		Cargo damage
0 N		ジ心		$\underset{N}{N}{ }_{N}^{N}$				Mat fail－atru \＆equip
$\cdots 0$		Nog						Mat fail tmach o equip
＋				に会				Cesualties not classified
$\underbrace{ \pm}_{\omega}$								Total

					$\begin{aligned} & \text { 芴 } \\ & \frac{3}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
-90N	응		$\omega \omega \rightarrow \quad$－	ーいか		${\underset{N}{\omega}}_{\stackrel{\omega}{\omega}} \quad \sim \sim N$	Coll：crossing
§			\ldots	\cdots		$\stackrel{\text { Orn }}{\substack{\text { a }}}$	CoIl：anchored
							Coll：fog
ENNO	악 은		r	\cdots		憂ンNo	Coll：plers
$き$ ミッ	옹			－N		${\underset{N}{N}}_{\mathrm{N}}^{\mathrm{N}} \text { unv }$	Coll：other
\vdots	꿍		いャ	ーN		N以くい	Exp a／o Eire：cargo
	\bigcirc		ω	N		$\frac{\mathrm{g}}{\mathrm{b}}$ un un	Exp a／o fire：ves fuel
			\sim				Exp a／o fire：pressure ves．
ミoㅇ․	$\stackrel{\sim}{\infty}$		－－			$\underset{\sim}{\mathrm{N}} \stackrel{\mathrm{~N}}{\mathrm{~N}} \mathrm{\omega}$	Exp a／o fire：stru，equip， other
$\geqslant 0$			－-	$\stackrel{+}{ }$		家 ω	Gnd：damage to ves
\bigcirc			－			$\underbrace{}_{N N}$	Gnd：no damage to ves．
运心合心	$\stackrel{\infty}{\infty}$		N－N	HAv		d゙Nuた	Foundering，cap \＆flood
							Heavy vea．damage
						．	Cargo damage
Ho	$\stackrel{\sim}{1} \stackrel{0}{\square}$		ーッ い			追いいい	Mat fail－stru \＆equip
$\stackrel{\square}{r}$	$\stackrel{\circ}{N}$		－			$\stackrel{\omega}{\omega}$	Mat fail mach \＆equip
9 gu	$\stackrel{\circ}{1}$		がー N			$\sum_{0}^{n} u_{0} \omega \infty$	Casualties not clasgified
$\begin{aligned} & \text { ANO } \\ & \text { NoN } \\ & \text { No } \\ & \hline N \end{aligned}$	${\underset{\sim}{\circ}}_{\substack{\text { O}}}$			N台家			Total

NOOOOON ぶらさいいめ	-		ON	OON		Coll：crossing
000000^{9}	$00 \stackrel{\circ}{\circ} 00$	$0000000 \text { 品 }$	$\text { - } \stackrel{9}{-1}$	$\stackrel{9}{1} 00$		Col1：anchored
0000000	00000	000000000	0000	－000		Co11：fog
Fo゚o oig		$\stackrel{\sim}{\circ}$	$\stackrel{\mathrm{F}}{\mathrm{O}} \mathrm{~N}$	$\stackrel{\sim}{\sim} \stackrel{\sim}{\circ}$		Coll：piers
上のo品品品	○ごきた。	으№ 0000 上た	$\stackrel{\text { 압앙 }}{\circ}$	- ャo ~~~		Coll：other
FたO No 융		$\stackrel{\text { ト }}{\circ}$	$\stackrel{N}{n}^{n}$	으Nㄴ		Exp a／o fire：cargo
$\frac{9}{6} 00 \frac{9}{N} 90$	oooino	000000^{00}	$0_{0}^{0} 0$	$\frac{0}{2} \mathrm{w}_{0}^{0}$		Exp a／o fire：ves fuel
0000000	00000	000000000	0000	0000		Exp a／o fire：pressure ves．
	がきのにo		$\omega_{N}^{N} 00$	○ N゙Nに		Exp a／o fire：etru，equip， other
$0 \stackrel{n}{1} 0000 \stackrel{1}{2}$	$\stackrel{n}{=} \stackrel{n}{0} 0$		$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\stackrel{n}{-}}{-0} 0$		Gnd：damage to ves
$\stackrel{\text { Fo }}{5}$	o옹o	$\stackrel{\circ}{-1} 00000 \stackrel{\text { 上 }}{\boldsymbol{\sim}}$	ю~ ค	옹응		Gnd：no damage to ves．
	$\stackrel{\sim}{\omega}{\underset{\omega}{\omega}}_{\substack{\omega}}^{\omega}$	No 等品	${\underset{\omega}{\omega}}_{\stackrel{\circ}{0}}^{\stackrel{\sigma}{\sigma}}$	$\stackrel{y}{2} \underset{\sim}{\omega}$		Founderígg，cap \＆flood
0000000	00000	00000000	0000	0000		Heavy wea．damage
0000000	00000	00000000	0000	0000		Cargo damage
NaOOOOO ぶっだった	Hール		ーギった	- 옹은		Hat fail－stru \＆equip
$\frac{\text { wool }}{\text { Nooo }}$	$\frac{w}{\omega} 0000$	000000^{ω}	$0 \stackrel{\omega}{\omega} 00$	$0 \stackrel{\circ}{5}$		Mat failmach \＆equip
	$0 \stackrel{40}{\omega} 00$	$\stackrel{N}{N} 00 \stackrel{N}{N} 00 \stackrel{\theta}{N}$	$\frac{0}{2} \frac{u}{0} 0$	$\stackrel{9}{9}$		Casualties not classified
$\begin{aligned} & N 0 \\ & 0 \\ & 0 \end{aligned}$			に芯ッぶ	N		Total

				包芴	
$\stackrel{\infty}{\infty}$	\checkmark いよ	がらこんが心つ	ーがNー心にN		Natural cause
「－N	N	N	N		Homicide
	ー மャ	ーン い	$\cdots \omega \checkmark$－		Suicide
NV	$\omega \omega$	un NNO	$\bigcirc \quad a \quad \omega$		Disappearance
					Slips \＆falls－－1adders
ω	$\cdots \mathrm{N}$	$\cdots \quad * ー$	い トーナ		Slips \＆falls－gangways
N		－	－- －		Slips of falls－on deck
ート	NーF	の－のート	のび Nが		Slips \＆falls－－other
$\bigcirc{ }^{\circ} \mathrm{O}$	Novicu				Falls from ves．－－1nto water
NN ω		－Nr	いt		Falls into holds or tanks
＊Nート～	－NNN		∞－No No		Struck by objects；falling， dropped or moving
$\stackrel{\square}{\square}$	－0．0ヶ	\cdots N－	Aン トロー		Exposure of asphyxiation
トレ	トャ		トロ N		Struck against，crushed， bumped into objects
$\cdots \quad \mathrm{N}$	ω	ω	$\omega \quad \omega$		Operating machinery of tools
					Burns \＆scalds（other than electrical）
\cdots	ーャー	\rightarrow ート	ーN N ー		Electrical shock 6 burns
－	－	$\omega \quad \downarrow$	$\cdots \quad-\omega$		Caught in lines，chains or wire ropes
\vdash	\vdash	－	－\quad		Pinching or crushing
					Heavy weather
					Overexercion，sprains a strains
					Cuts，lacerations，bruises， \＆punctures
$\stackrel{ }{ }$	\cdots	\vdash	$\cdots \quad$－		Altercations 8 misconduct
忍い ω		－Nロートゥ	めーのーちゃN		Unknown or insufficient information
		ず心			Total

	Read，neck，shoulder Back Chest Extremities Abdomen，groin，hip	烒						
	N			Nー - －	U N	NWN		Natural cause
								Homicide
	N \quad－		$\cdots \mathrm{N}$	\cdots N	ω	Nト		Suicide
					$\cdots \stackrel{\text { 「 }}{\sim}$			Disappearance
			$\omega_{0} \stackrel{\sim}{\sim}$	$\because \sim$ ッN゙い		－心N		Slips \＆falls－ladders
N	ω Nr		u ω	$\mapsto \sim$	∞	トのー		Slips \＆falls－－gangways
0			凫び心の		がった	会気㨞		Slips \＆falls－on deck
\sim	－${ }_{-\infty}^{\infty}$		A盛而 $\rightarrow \infty$		Nơّ心	会血		Slips \＆falla－other
－	$\omega \sim N$		$N \quad \omega N$		ールー	い $\begin{gathered}\text { ¢ }\end{gathered}$		Falls from ves，－into wasez
	Nut wor		NNONN	\cdots N－トー	がった	ーのが		Falls into holds or tains
$\stackrel{\square}{\square}$	さ运いつぶ			gnar゙vo边染w	$\underset{\infty}{\infty} \stackrel{N}{\infty}$	の会芯		Struck by objects；fallios． dropped or moving
\pm			$\cdots \omega$	ω－\quad－	$\omega \leftharpoondown$	$\omega \vdash$		Exposure \％asphyxiation
N			Nへ心念No		\cdots ¢	罒っ「0		Struck against，crushed， bumped into objects
	$\stackrel{\omega}{\sim}$		会べぃ		心～0	ーちゃい		Operating machinery 6 tocla
	N会w		四い心か	↔ NーN゙心N	た各ヵ	へ心灾灾		Burns 6 scalds（other thas electrical）
\mapsto			\cdots	\cdots	－	\vdash		Electrical shock \＆burns
\cdots	㐌ゅ		－¢ 完が	の N	\cdots	会にか		Caught in lines，chains ar wire ropes
	\ldots		出氙盛		「ご	$\cdots \sim$ ¢		Pinching or crushing
	$\omega \quad$－		NN	ω ー	\pm	N No		Heavy weather
	N゙った会		un号号い	亦N以上各め呂出	会会ャ－	の尔先		Overexertion，sprains f strains
	N忍に		ャッちのぃ	－Ha now．	O盛	$\cdots \infty$		Cuts，lacerations，bruises， \＆punctures
N	いづいN		がいが，	\cdots－wund	古	res		Altercations \＆misconduct
$\stackrel{\square}{5}$	ーセゅャャ			\cdots－- －	い	GNow		Unknown or insufficient information
\sim								Total

[^0]: If you have any questions about the Nautical Queries, please contact Commanding Officer, U.S. Coast Guard Institute (mvp), P.O. Substation 18, Oklahoma City, Oklahoma 73169; tel.: (405) 686-4417.

