Analysis of Fishing Vessel Casualties

Table of Contents

Executive Summary ... 1

- The Magnitude of Fishing Industry Casualties .. 2

A. Main Points .. 3

B. Lost Vessels... 5

- Overview ... 5
- Lost F/Vs by Year and District ... 6
- Vessel Loss Trend .. 6
- Comparison of Lost F/Vs to Dockside Exams .. 10
- F/Vs Loss Rate by Length .. 11
- Lost Documented F/Vs by Age and Hull Material .. 12
- Pre-Casualty Operation .. 13
- F/V Loss by Type of Incident .. 13
- Causes of F/V Flooding .. 14
- F/V Fire Locations .. 14

C. Deaths and Missing Persons .. 16

- Overview ... 16
- Fatalities by Coast Guard District .. 16
- Distribution of Fatalities ... 16
- Fatalities by Casualty Type ... 17
- Deaths with Vessel Loss .. 18
- Cold Water Fatalities ... 19
- Fatalities in Warmer Waters ... 20
- Fatalities v. Hull Material ... 22
- Vessel-Related Fatality Trend .. 23
- Comparison to Vessel Losses ... 24
- Use of Safety Equipment .. 24
- Survival Rates in Cold Waters .. 25
- Voluntary Dockside Examinations ... 26
- Good Samaritan Rescues .. 27
- Falls Overboard .. 29
- Data Interpretation .. 30

Appendix A: Selected Casualties .. 33

Appendix B: About the Data Sources ... 38

- Assumptions and Constraints .. 38

Appendix C: Control Charting Methodology 40

Appendix D: Historic Casualty Counts ... 41

Appendix E: Vessel-Related Fatalities, by District 42

Appendix F: Vessel Losses, by District & Year 46
EXECUTIVE SUMMARY

During a three-week period in the winter of 1998/1999 four clam/conch vessels were lost in Mid-Atlantic waters, which resulted in the deaths of 11 fishermen. After this cluster of accidents, a task force of government and industry representatives was chartered to study trends in fishing vessel (F/V) safety and to make recommendations for reducing loss of life and property. The Task Force’s report of March 1999 provided a series of short-term and long-term recommendations.¹ The report also included a high-level review of casualty data for calendar years 1994 – 1998.

Shortly after the Task Force report was released, industry and senior Coast Guard managers requested more details about fishing vessel casualties. The Compliance Analysis Division collaborated with the Fishing Vessel Safety program manager and prepared a follow-on review to provide information about why and how such incidents occurred. That report was distributed in October of 1999. This document is the fourth edition of the casualty study with newly added data for calendar years 1992, 1993, and 2005 through 2007.² The resulting updated data set includes such factors as:

- Operation of the vessel at the time of the incident.
- Geographic or location information of the incident.
- Participation of the vessel in the voluntary exam program and its decal status.
- Causal information about vessel loss, (what went wrong).
- Causal information about deaths and missing persons.
- Assistance by Good Samaritan vessels, and;
- Availability and use of lifesaving equipment.

Analysis of the casualty data is presented in two parts: vessel losses, and crew fatalities. Each part begins with overall summaries and descriptive statistics, and then a more detailed "drill down" analysis is provided on the data. For each of the two groupings, the broad based information was examined in increasing detail, in order to "peel back," or focus on, the most significant factors involved in these fishing vessel incidents.

For the sixteen-year period from 1992 through 2007, there were 1,903 lost vessels and 934 fatalities. Of those fatalities, 507 occurred at the same time a vessel was lost. Overall, this is an average of 119 lost vessels and 58 fatalities per year.³

For both vessel losses and personnel casualties, it was found that a majority of these incidents were not directly related to fishing operations, but to other activities, such as traveling to or from port. Most often, fishermen are dying because their vessel sank and

¹ U.S. Coast Guard, Living To Fish, Dying To Fish, Fishing Vessel Casualty Task Force Report, Washington, DC, March 1999. This report is available on the Coast Guard internet portal: http://homeport.uscg.mil, in the “Investigations” section.

² A description of the data sources used in this report, along with a discussion of applicable assumptions and constraints, is presented in Appendix B.

³ Except where noted, this data is not normalized because reliable vessel and workforce population data is not available for the fishing fleet. With this in mind, fleet size is assumed to be essentially uniform for the period of this study, as will be explained in more detail, later in this document.
they entered the water. Further, the analysis of personnel casualties indicates links between water conditions and the use of lifesaving equipment, especially survival suits. In particular, most of the water exposure deaths were along the West and Northeast coasts, where the water is coldest. Use of survival suits was infrequent in such incidents. However, **fishermen survive more than twice as often when survival suits are properly used**.

Given the Coast Guard’s limited authority over fishing vessel design and maintenance, analysis of this data illustrates that when vessels have the safety equipment prescribed by Federal Regulations, and fishermen use the equipment properly, their chances of survival increase significantly.

Before proceeding with the details of fishing vessel losses and fatalities, it may be useful to place those incidents in the context of the U.S. commercial fleet, overall. Coast Guard records show that fishing vessel casualties account for a large percentage of the most serious incidents. From calendar year 1992 through 2007, fishing vessels were involved in 40% of all major marine casualties, (shown below). In fact, at the time of this report a Coast Guard Marine Board was investigating the loss of the fish processing vessel *ALASKA RANGER*, which sank on 23 March 2008. Of the 47 persons on board, four died and one is missing and presumed dead.

4 Title 46, Code of Federal Regulations, Paragraph 4.40-5(d), defines a major marine casualty as “a casualty involving a vessel, other than a public vessel, that results in: 1) The loss of six or more lives; 2) The loss of a mechanically propelled vessel of 100 or more gross tons; 3) Property damage initially estimated at $500,000 or more . . . “
A. MAIN POINTS

1. During this period 1,903 fishing vessels were lost. Of those vessels, 1,543 (just over 81%) had Certificates of Documentation, rather than state registration, (pg. 5).

2. Overall, the majority of vessel losses occurred in the 17th, 8th, and 1st Coast Guard Districts, (p. 6).

3. There was a statistically significant drop in vessel losses for 2006 and 2007. Given the lack of regulations and the complexity of the industry, the drop is most likely due to a combination of economic, environmental, fisheries management and other regulatory factors, (pp. 7-9).

4. A comparison of vessel losses and safety exams showed limited correlation (about 34%). Current regulations do not focus on preventing vessel loss, (pg 10).

5. When shown as a rate (losses/1000 vessels), losses occurred more frequently with longer vessels, (pg 11).

6. Fishing vessels between 11 and 30 years of age, with a valid Certificate of Documentation, sustained the greatest loss. Also, most vessels lost were constructed of wood (48%), steel (25%), or FRP (24%), (pg 12).

7. Most fishing vessel losses (62%) occurred while engaged in non-fishing operations, (pg. 13).

8. Together, flooding and fire were the initiating events in 56% the fishing vessel losses, (pg. 13).

9. In the 16 year period of this study there were 934 crewmember fatalities, or an average of 58 per year. For the most recent 5 years there were 197 fatalities, or an average of 39 per year, (pg. 16).

10. The U.S. fishing industry suffered its worst casualty in 50 years with the loss of the ARCTIC ROSE. The vessel disappeared in the Bering Sea the night of 1 April 2001, resulting in 1 deceased and 14 missing crewmembers, (pg 16).

11. Overall, the majority of deaths (58%) occurred in the 17th, 8th, and 1st Coast Guard Districts, (pg. 16).

12. Most incidents (91%) result in either one or two fatalities, indicating that multiple-fatality incidents are relatively rare. Thus, it would be necessary to address a relatively large number of incidents in order to reduce the fatality counts significantly, (pg. 16).

13. Examination of the events leading to death confirmed that water exposure was, by far, the most significant factor – 78% of all fatalities, (pg. 16).

14. Deaths from water exposure were higher along the West and Northeast coasts than in any other region because of more severe environmental conditions, (pg. 18).

15. Vessel-related fatalities tend to be higher in the months of October through January, (pp. 19).
16. When presented as a rate (fatalities per vessel lost), vessel-related fatalities were the lowest in the warmer waters of the Gulf of Mexico and along the Southeast U.S. coast, (pps. 20 - 21).

17. At least 2 fatalities resulted from inadequate training, (pg.20).

18. Forty three percent of all vessel-related fatalities occurred on steel hulled vessels. Population data showed that steel vessels are generally larger than vessels of other hull materials. Consequently, they are able to operate farther offshore, with larger crews. Given the higher risk factors of crew size and distance from shore, it may be appropriate to focus preventive efforts on steel vessels, (pg. 22).

19. Beginning in calendar year 2000, there was a significant downward shift in the number of fatalities per year. However, the trend has leveled off. To reduce the fatality rate further may require additional improvements in safety, (pg. 23).

20. Overall, the correlation between vessel losses and fatalities was found to be quite low. Again, current regulations focus more on preventing fatalities than preventing vessel loss, (pg. 24).

21. In cold waters, fishermen survive more than twice as often when lifesaving equipment is used, (pg. 25).

22. Loss of lives was much lower on those vessels that received a safety decal. When deaths did occur, the vessel was lost suddenly with little time to respond, (pg. 26).

23. A significant number of crewmember fatalities may have been prevented because Good Samaritan vessels were present for nearly 30% of vessels lost. Because of quick rescue, as many as 1,084 fatalities may have been prevented. Given that such vessels have prevented a large number of persons from entering the water, they may be hiding the true risk from vessel losses. (pp. 27-28).

24. With 23% of the total deaths (217 of 934), falls overboard were the second largest group of fatalities. PFD/survival suit usage was reported with only two of those fatalities, (pg.29).

25. The highest number of falls overboard fatalities occurred in the 8th District, accounting for 35% of their total (77 of 217). Given that the 8th District has the warmest waters and, thus, the longest survival times, it is likely that many of the fatalities were preventable with PFD’s. This appears to be a region where continued emphasis on safety equipment, drills and training would be beneficial, (pg.29).

26. To eliminate some fatalities, such as those that occur while the crew is asleep, it will be necessary to prevent vessel losses, (various).
B. LOST VESSELS

Overview

After extracting and examining the casualty data as described in Appendix B, the Coast Guard databases showed 1,903 fishing vessels (documented and state registered) were lost during calendar years 1992 through 2007 (Figure 1). As an average, 119 vessels were lost each year. For the most recent 5 years, an average of 91 vessels were lost per year. The maximum and minimum number of vessel losses were 166 in calendar year 1996 and 61 in calendar year 2007, (a record low). Of the 1,903 vessels, 1,547 or just over 81%, had certificates of documentation issued by the Coast Guard, instead of state registration numbers. According to the Coast Guard’s MISLE database, the population of documented fishing vessels was 21,672 in 2007. Appendix F shows the data in Figure 1 by Coast Guard District.

Figure 1
The table below displays vessel losses by District and Year. The three Districts with the highest number of fishing vessel losses were the 17th, 8th, and 1st Districts – for a total of 1,089 casualties (57%). In the most recent five years, the First District reported the most vessel losses. A map of the Coast Guard Districts is shown in Figure 2, below.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>46</td>
<td>25</td>
<td>42</td>
<td>26</td>
<td>47</td>
<td>38</td>
<td>31</td>
<td>43</td>
<td>22</td>
<td>29</td>
<td>22</td>
<td>22</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>457</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>34</td>
<td>25</td>
<td>23</td>
<td>29</td>
<td>25</td>
<td>21</td>
<td>19</td>
<td>14</td>
<td>28</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>343</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>30</td>
<td>28</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td>13</td>
<td>20</td>
<td>31</td>
<td>16</td>
<td>11</td>
<td>289</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>13</td>
<td>20</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>261</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>19</td>
<td>24</td>
<td>13</td>
<td>24</td>
<td>20</td>
<td>14</td>
<td>16</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>224</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>19</td>
<td>10</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>163</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>116</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>45</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td>148</td>
<td>153</td>
<td>117</td>
<td>166</td>
<td>138</td>
<td>125</td>
<td>123</td>
<td>85</td>
<td>133</td>
<td>122</td>
<td>107</td>
<td>112</td>
<td>99</td>
<td>75</td>
<td>61</td>
<td>1903</td>
<td>454</td>
</tr>
</tbody>
</table>

Table 1

Figure 2
Vessel Loss Trend

Figure 3 shows the 16 year trend in fishing vessel losses. In order to evaluate this trend, a methodology known as control charting, is used. The “base period” for this chart includes calendar years 1992 through 1999. That period was selected because additional emphasis was placed on fishing vessel safety after the 1999 Task Force. Consequently, that point in time may represent a “process change”. The calculated upper and lower limits are 192.6 and 84.6, respectively. The resulting chart shows a downward trend, with statistically significant values for calendar years 2000, 2006 and 2007. Those values are considered significant, because they reached or fell below the expected limits of year-to-year variation.

![Lost Fishing Vessels 1992 - 2007](image)

The reduction of vessel losses in 2000 might be explained by increased emphasis on fishing vessel safety after the 1999 Task Force report was released. Here are some highlights:

- On April 28, 1999 the Assistant Commandant for Operations and the Assistant Commandant for Marine Safety & Environmental Protection, after consultation with the Commercial Fishing Industry Vessel Safety Advisory Committee, released an official message describing a series of short term and long-term actions to enhance safety. Based on the Task Force report, the short-term actions included increased emphasis on safety items during at-sea boardings, additional training for boarding officers and stepped up outreach activities.
- During the fall and winter of 1999, each of the Coast Guard Area Commanders

5 Wheeler, Donald J., *Understanding Variation: The Key to Managing Chaos*, SPC Press, Inc., Knoxville, TN, 1993, pg. 134. This methodology is described in Appendix C.
announced their own initiatives to reduce fishing vessel casualties – “Operation Safe Catch” in Atlantic Area and “Operation Safe Return” in the Pacific Area. As suggested in the Commandant’s message, these initiatives placed additional emphasis on safety items during at-sea boardings.

- In calendar years 1999 and 2000, there was also a sharp increase in the number of dockside exams.

The control chart also shows unusually low casualty figures for calendar years 2006 and 2007, which appear to be the continuation of a downward trend that started in 2002. In fact, both of those values are record lows. While the recent reduction in vessel losses is statistically significant, there is no simple explanation, given that current regulations do not focus on preventing vessel loss. Thus, a number of other factors may have contributed to the apparent safety improvement, including:

- An increased Coast Guard presence along the coasts of the United States. After the terrorist attacks of 11 September 2001, the operating hours of Coast Guard ships and aircraft, for all mission areas, increased by a large percentage. This increased presence could have at least two benefits to fishing vessel safety:

 Deterrence. Vessels are more likely to comply with safety regulations when the possibility of an underway boarding increases. In fact, the number of fishing vessel boardings did increase during this period. The MISLE database shows 3,883 boardings in calendar year 2000 and 7,078 for calendar year 2007, (nearly double).

 Proximity to rescue. As the number of patrolling ships and aircraft in a given region increases, the time to respond to an emergency decreases, potentially reducing the number of vessel losses. In addition, the 17th District (Alaska) relocates ships and aircraft as certain fisheries open in order to improve response times and reduce the risk of fatalities.

- Return to prior emphasis on safety. – Shortly after the terrorist attacks of 11 September 2001, the Coast Guard increased the priority of homeland security missions. This change in emphasis very likely reduced the number of personnel available for fishing vessel safety activities. In fact, the number of dockside exams and issued decals dropped after 2001, then returned to prior levels, starting in 2004.

- Hurricanes of 2005. – According to the National Marine Fisheries Service, “Hurricanes Katrina and Rita devastated the shoreside infrastructure and fishing fleet in a wide swath from Mississippi Sound through the Louisiana Delta, including parts

6 Historic casualty figures show an average of 207 fishing vessel losses for calendar years 1970 through 1991. During that period, the record low was 89 vessels lost in 1978. Appendix D contains a summary of the historic casualty data.

of the Florida Keys, western Louisiana, and eastern Texas.” In fact, casualty statistics suggest that fewer vessels were operating after the hurricanes of 2005. An average of 24 vessels per year were lost in the Gulf of Mexico from 1992 – 2004, compared to only 5 vessels lost in 2006 and 4 lost vessels in 2007. (See Table 1.)

- **High fuel prices.** – As the price of fuel has increased in recent years, the number of fishing vessels in operation or the number of days at sea may have decreased. According to the U. S. Department of Energy, the price of crude oil increased from approximately $18.68 per barrel in January of 2002 to about $89.76 in December of 2007. The price of refined products, such as diesel fuel and gasoline, varies in direct proportion to the price of crude oil.

- **Changes in fishery management.** – There are eight Regional Fishery Management Councils that regulate fishing in the Exclusive Economic Zone of the United States, (generally 3 to 200 miles from shore). The fishery regulations are complex and have changed over time. As the regulations change, the number of vessels that operate in a fishery and/or the number of days that vessels may operate will be affected, with a corresponding change in casualty risk or “exposure”. For example, in recent years several fisheries in Alaska have been converted from “open access” to “individual fishing quota” (IFQ) management plans. IFQ’s have reduced the number of vessels that may operate in those fisheries. Thus, the overall risk of vessel casualties is reduced. In addition, a secondary justification for IFQ’s was a belief that vessel and crew safety would improve, because vessel owners would have more control over their schedules and would be able to fish over a longer period of time. Research has confirmed that the IFQ management plan is safer than open access.

- **Missing data.** - Since the terrorist attacks of 11 September 2001, the Coast Guard has experienced dramatic organizational changes. On 1 March 2003, the Coast Guard moved from the Department of Transportation to the newly formed Department of Homeland Security. From July 2004 through 2006 all field units, including Marine Safety Offices, were reorganized into Sectors to better align with new homeland security missions. As Coast Guard units and personnel were realigned, some disruption in traditional mission areas was likely. The downward trend in vessel losses corresponds with the period of unit reorganization. Consequently, some incident investigations may not have been recorded in the MISLE database.

11 IBID.
Comparison of Lost F/Vs to Dockside Exams

Table 2 summarizes the decal status of the 1,903 lost fishing vessels. Current decals, issued within the prior 2 years\(^{12}\), were onboard 17% of all lost vessels, and 19% of the documented vessels. Statistically, a comparison of vessel losses and exams, by calendar year, shows very little correlation, (about 34%). In fact, other studies have concluded that additional measures are needed to prevent vessel loss, including crew training and licensing and requirements for design, watertight integrity, stability and periodic inspections of fishing vessels. The Fishing Vessel Casualty Task Force Report\(^{13}\) covered this topic in detail.

<table>
<thead>
<tr>
<th>Decal Status</th>
<th>Vessels Lost</th>
<th>Documented Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1243</td>
<td>947</td>
</tr>
<tr>
<td>Current</td>
<td>323</td>
<td>297</td>
</tr>
<tr>
<td>Expired</td>
<td>324</td>
<td>297</td>
</tr>
<tr>
<td>Unknown</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1903</td>
<td>1547</td>
</tr>
</tbody>
</table>

Table 2

It is important to note that the Federal Regulations (46 CFR, Part 28) promulgated under the Commercial Fishing Industry Safety Act of 1988 (P.L. 100-424) primarily focus on emergency response, such as lifesaving and firefighting equipment. Thus, it would be difficult to show that strict compliance with the safety regulations would prevent vessel loss. However, the Coast Guard’s voluntary dockside examination program includes an educational component, intended to raise awareness of vessel watertight integrity, stability, and maintenance problems that often lead to vessel loss. This is a possible benefit of dockside examinations that is not included in law or regulation. Of course, the voluntary nature of the program suggests a self-selection bias. In other words, the exams are not focused on vessels that need the most safety improvements, nor are the exams randomly distributed throughout the fishing fleet. Instead, vessel owners and operators that are already interested in safety improvement will request the exam.

There are occasions when dockside exams are mandatory. With increasing frequency, the National Marine Fisheries Service (NMFS) regulations require Coast Guard safety decals as a condition to fish. The purpose of these requirements is for the protection of the NMFS observers assigned to the vessels. Also, before certain fishery openings in Alaska, all vessels in port are visited and encouraged to complete a safety exam. When an exam is declined, the vessel’s owner or master is informed that the vessel is more likely to be boarded while underway.

\(^{12}\) Dockside exams are a voluntary initiative. As such, there is no statute or regulation that specifies an expiration date for safety decals. The Coast Guard simply recommends a safety exam every two years, to verify that equipment is properly maintained and expendable items are up to date.

\(^{13}\) U. S. Coast Guard. Living to Fish, Dying To Fish. Fishing Vessel Casualty Task Force, Washington, DC, March, 1999, Chapter 5 and Appendix E.
F/Vs Loss Rate by Length

The fishing vessel loss rate by vessel length is shown in Figure 4, for documented vessels greater than 20 feet (1,547 vessels). A line has been added for each corresponding length range showing the annual rate of vessel loss per 1000 vessels.\footnote{Lost F/Vs within each length category divided by the total number of F/Vs within these categories. (Total Documented F/V Population for 2007 = 21,672)} These "normalized" figures show that accident rates increase with vessel length, with a sharp spike in the 60 ft. to 70 ft. range. A variety of factors could influence this increase in accident rates. However, it is likely that larger vessels are capable of operating further from shore, with the potential for longer voyages or exposure to more severe environmental conditions.

![Figure 4](image-url)

Lost F/V's, By Length (Documented Only)
1992 - 2007

Vessels Lost = 1,547
Shown in Table 3 are the Documented Fishing Vessel losses by age and hull material. Fishing vessel losses occurred predominately within the age range of 11 to 30 years. This age group accounted for 878 (57%) of the vessels. The breakdown of the hull material consists of the following: Wood - 740 (48%); Fiberglass Reinforced Plastic (FRP) 382 - (25%); Steel – 377 (24%); Aluminum – 20 (~1%); Concrete – 8 (.5%); and Unknown Material – 20 (~1%).

<table>
<thead>
<tr>
<th>Hull Material</th>
<th><=10</th>
<th>11<=</th>
<th>21<=</th>
<th>31<=</th>
<th>41<=</th>
<th>51<=</th>
<th>61<=</th>
<th>71<=</th>
<th>81<=</th>
<th>91<=</th>
<th>100</th>
<th>Total</th>
<th>% Of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td>Concrete</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>FRP (Fiberglass)</td>
<td>66</td>
<td>175</td>
<td>112</td>
<td>24</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>382</td>
<td>24.7</td>
</tr>
<tr>
<td>Steel</td>
<td>41</td>
<td>115</td>
<td>140</td>
<td>48</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>377</td>
<td>24.4</td>
</tr>
<tr>
<td>Wood</td>
<td>10</td>
<td>112</td>
<td>190</td>
<td>110</td>
<td>121</td>
<td>89</td>
<td>54</td>
<td>32</td>
<td>20</td>
<td>1</td>
<td></td>
<td>740</td>
<td>47.8</td>
</tr>
<tr>
<td>Unk Mtl</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td>Grand Total</td>
<td>127</td>
<td>417</td>
<td>461</td>
<td>186</td>
<td>142</td>
<td>99</td>
<td>55</td>
<td>33</td>
<td>20</td>
<td>1</td>
<td>6</td>
<td>1547</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3

The line diagram below (Figure 5) compares the vessel losses by age for the three main hull types, as shown in Table 3.
Pre-Casualty Operation

Figure 6 describes how the vessels were being operated prior to casualty occurrence. As displayed, 34% (639) of the losses occurred while the vessels were transiting (non-fishing mode). Other categories involving non-fishing modes were Moored, Inbound, Outbound, Towing, Being Towed and Fueling, for a total of 1,179 vessels (62%).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Vessels Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transiting</td>
<td>639</td>
</tr>
<tr>
<td>Unknown</td>
<td>244</td>
</tr>
<tr>
<td>Inbound</td>
<td>200</td>
</tr>
<tr>
<td>Moored</td>
<td>211</td>
</tr>
<tr>
<td>Anchored</td>
<td>146</td>
</tr>
<tr>
<td>Fishing</td>
<td>92</td>
</tr>
<tr>
<td>Outbound</td>
<td>87</td>
</tr>
<tr>
<td>Towing</td>
<td>86</td>
</tr>
<tr>
<td>Being Towed</td>
<td>83</td>
</tr>
<tr>
<td>Fueling</td>
<td>43</td>
</tr>
<tr>
<td>Setting gear</td>
<td>25</td>
</tr>
<tr>
<td>Towing</td>
<td>20</td>
</tr>
<tr>
<td>Anchoring</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
</tr>
</tbody>
</table>

Vessels Lost = 1,903

F/V Loss by Type of Incident

Most casualties can be described as a series of events that, in this study, lead to the loss of a vessel, (e.g., a hull failure, followed by flooding, then sinking). Figure 7 summarizes the incidents by the type of event most directly associated with the vessel loss. Vessel flooding contributed to 36% of the vessel losses during this period. Fires onboard vessels were the second leading type, having contributed to 20% of the losses.

<table>
<thead>
<tr>
<th>Type of Incident</th>
<th>Vessels Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding</td>
<td>685</td>
</tr>
<tr>
<td>Fire</td>
<td>383</td>
</tr>
<tr>
<td>Grounding</td>
<td>310</td>
</tr>
<tr>
<td>Capsizing</td>
<td>182</td>
</tr>
<tr>
<td>Collision</td>
<td>70</td>
</tr>
<tr>
<td>Unknown</td>
<td>69</td>
</tr>
<tr>
<td>Allision</td>
<td>67</td>
</tr>
<tr>
<td>Loss of vessel control</td>
<td>47</td>
</tr>
<tr>
<td>Structural failure</td>
<td>45</td>
</tr>
<tr>
<td>Weather</td>
<td>22</td>
</tr>
<tr>
<td>Explosion</td>
<td>15</td>
</tr>
<tr>
<td>Loss of electrical power</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Vessels Lost = 1,903

Figure 6

Figure 7
Causes of F/V Flooding

The leading type of vessel loss, as indicated by Figure 7, was flooding. The major causes leading to flooding were subdivided into five categories in Figure 8, consisting of Hull/Machinery Failure, Weather, Human Factors, External Fault, and Unknown. The area that contributed most to vessel flooding was Hull/Machinery Failure, accounting for 67% of the flooding losses and 24% of the casualties, overall. The Hull/Machinery Failures included the following: damage from casualties (i.e. grounding & allisions), Failure of hull material (i.e. wood planking, steel wastage), Failure of propulsion equipment, etc.

![Causes Of F/V Flooding 1992 - 2007](image)

F/V Fire Locations

The second leading type of vessel loss was fire. In evaluating the casualty reports, it was somewhat difficult to determine the cause of most fires; however the location was easily retrieved. As indicated below, 70% of the fire locations occurred within the vessel’s engine room. Further analysis was not feasible beyond this point due to the level of detail in many of the investigation reports.

![Lost F/V Fire Locations 1992 - 2007](image)
During the 16 year period of this report, 1,903 fishing vessels were lost, for an average of 119 per year. Most vessel losses (57%) occurred in the 17th (Alaska), 8th (Gulf Of Mexico), and 1st (Northeast) Coast Guard Districts. For the most recent 5 years, an average of 91 vessels were lost per year.

Coast Guard documented vessels accounted for 1,547 (81%) of the vessel losses. Among the documented vessel population, accident rates increased with vessel length, with a sharp spike for vessels 60 – 70 feet in length. More than half (57%) of the lost vessels were between 11 and 30 years of age.

A methodology known as control charting was used to examine the trend in vessel losses. The chart showed a statistically significant drop for 2006 and 2007 (record lows). Given the complexity of the fishing industry, the drop is most likely due to a combination of factors, including economics (e.g., fuel prices, changes in fishery management plans), environment (e.g., hurricanes Rita and Katrina), and regulatory activities (e.g., increased Coast Guard boardings and examinations).

It is difficult to show that strict compliance with the fishing vessel safety regulations would prevent vessel losses. The Federal Regulations (46 CFR, Part 28) promulgated under the Commercial Fishing Industry Safety Act of 1988 (P.L. 100-424) primarily focus on emergency response, such as lifesaving and firefighting. The data presented on the preceding pages shows that most losses are due to flooding and fires - problems that are largely not covered nor can be substantially prevented by the current regulations.
C. DEATHS AND MISSING PERSONS

Overview
The casualty data for calendar years 1992 through 2007 included 666 reports involving loss of life. Those incidents resulted in 934 deaths, or an average of 58 fatalities per year. More than 1/3 of all fatalities (358) occurred at the same time a fishing vessel was lost, involving 184 of the lost vessels described in the preceding section. Significant among the vessel losses was the sinking of the ARCTIC ROSE on or about 1 April 2001, with 1 deceased and 14 missing crewmembers. The ARCTIC ROSE sinking was the worst casualty since the GUDRUN disappeared off the Atlantic coast on 1 January 1951, with the same fatality count.

Fatalities By Coast Guard District
Fatalities by Coast Guard District are shown in Table 4. Like vessel losses, the highest number of fatalities occurred in the 17th (Alaska), 8th (Gulf of Mexico) and 1st (Northeast) Districts, for 58% of the total. Also, the most recent 5 years are shown in the last column. As with vessel losses, the 1st District reported the most fatalities for that period.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>26</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>22</td>
<td>3</td>
<td>13</td>
<td>19</td>
<td>5</td>
<td>23</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>4</td>
<td>216</td>
<td>40</td>
</tr>
<tr>
<td>08</td>
<td>16</td>
<td>18</td>
<td>6</td>
<td>16</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>16</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>178</td>
<td>38</td>
</tr>
<tr>
<td>01</td>
<td>17</td>
<td>10</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>145</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>12</td>
<td>17</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>106</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>96</td>
<td>17</td>
</tr>
<tr>
<td>07</td>
<td>5</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>89</td>
<td>23</td>
</tr>
<tr>
<td>05</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>72</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>09</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>85</td>
<td>92</td>
<td>75</td>
<td>62</td>
<td>82</td>
<td>61</td>
<td>71</td>
<td>77</td>
<td>37</td>
<td>58</td>
<td>37</td>
<td>43</td>
<td>37</td>
<td>42</td>
<td>42</td>
<td>33</td>
<td>934</td>
<td>197</td>
</tr>
</tbody>
</table>

Table 4

Distribution Of Fatalities
The number of fatalities per incident is summarized by the histogram in Figure 10. Together, incidents with either one or two fatalities are 91% of the cases and 74% of the fatalities.

Figure 10

15 The ARCTIC ROSE and GUDRUN casualties were both subjects of Marine Boards of Investigation, which can be viewed at the Coast Guard’s Homeport web portal (http://homeport.uscg.mil) in the following folder: Missions > Investigations > Marine Casualty Reports.
Table 5 summarizes the fatalities by casualty type. As shown in both Table 5 and Figure 11, just over half (55%) of all fishing vessel deaths are attributed to flooding, sinking, or capsizing of the vessel. Another 23% of the fatalities were falls overboard. With three-quarters of all fatalities, water exposure is by far the most significant factor in personnel loss. The next largest group of accident types includes fishermen that were struck by or caught in lines or other equipment, for 6% of the total.

<table>
<thead>
<tr>
<th>Casualty Type</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vsl. Flooding/sinking/capsize</td>
<td>507</td>
</tr>
<tr>
<td>Fall into water</td>
<td>217</td>
</tr>
<tr>
<td>Pulled overboard by equipment</td>
<td>39</td>
</tr>
<tr>
<td>Diving Accident</td>
<td>35</td>
</tr>
<tr>
<td>Caught in winch</td>
<td>20</td>
</tr>
<tr>
<td>Dangerous Atmosphere</td>
<td>18</td>
</tr>
<tr>
<td>Unknown Injury Type</td>
<td>17</td>
</tr>
<tr>
<td>Struck by Moving Object - Other</td>
<td>15</td>
</tr>
<tr>
<td>Crushed by equipment</td>
<td>12</td>
</tr>
<tr>
<td>Smoke Inhalation - Vsl. Fire</td>
<td>10</td>
</tr>
<tr>
<td>Struck by/Caught in lines</td>
<td>12</td>
</tr>
<tr>
<td>Drowned - Entered water voluntarily</td>
<td>4</td>
</tr>
<tr>
<td>Drowned while attempting to unfoul propeller</td>
<td>4</td>
</tr>
<tr>
<td>Fall onto surface</td>
<td>4</td>
</tr>
<tr>
<td>Struck a Fixed Object</td>
<td>4</td>
</tr>
<tr>
<td>Electrical shock</td>
<td>4</td>
</tr>
<tr>
<td>Blown Overboard By Explosion</td>
<td>3</td>
</tr>
<tr>
<td>Vessel Collision/Grounding</td>
<td>4</td>
</tr>
<tr>
<td>Exposure - Other</td>
<td>3</td>
</tr>
<tr>
<td>Fell overboard, crushed between dock and vessel</td>
<td>1</td>
</tr>
<tr>
<td>Burns</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>934</td>
</tr>
</tbody>
</table>

Table 5

F/V Deaths, By Accident Type

1992 - 2007

Figure 11
Deaths With Vessel Loss

Since half of all personnel casualties are associated with the loss of a vessel (507 of 934), it is useful to look at them separately. Figure 12 shows this group, arranged by Coast Guard District. (A map of the Coast Guard Districts is shown in Figure 2.) The four highest counts are along the West and Northeast coasts of the U.S., accounting for nearly three-fourths (69%) of the vessel-related deaths.

The distribution of fatalities along the U.S. coastline is even more significant when one considers the figures for the 8th Coast Guard District, along the Gulf of Mexico. Overall, the 8th District had the second highest number of fatalities behind the 17th District (Alaska), with 216 and 178, respectively. Conversely, vessel-related fatalities in the warmer Gulf of Mexico waters ranked 5th among the 9 Coast Guard Districts. The large percentage of casualties on the West and Northeast coasts can be attributed to more severe conditions, especially cold-water exposure.\(^{16}\) It is well known that survival times decrease rapidly as water temperature decreases.\(^{17}\) Thus, the availability and use of survival equipment becomes more critical as the water becomes colder.

\(^{16}\) Cold water conditions exist year round along the West Coast because of the Aleutian, California, and Davidson currents, which run parallel to shore.

\(^{17}\) An overview of this topic is provided in the internet version of *The Ships Medicine Chest and Medical Aid at Sea*, Health & Safety Directorate, U.S. Coast Guard Headquarters: http://www.uscg.mil/hq/g-w/g-wk/wkh/smc/
Cold Water Fatalities

As noted, most vessel-related fatalities (69%) occurred in the more severe conditions off the West and Northeast coasts. Given this apparent relationship to environmental conditions, time of year is a factor as well. The chart in Figure 13 shows the vessel-related fatalities by month, along with a best-fit trend line. The chart shows that fatality counts tend to be higher in the months of October through January. The trend was examined with the ARCTIC ROSE incident included and excluded. The incident made only a slight change in the overall trend. The monthly distribution for West and Northeast coast incidents was, also, examined separately. The trend was essentially the same as the nationwide pattern. However, the difference between the months of October through January and the other months was a bit greater.

Figure 13
To provide a direct comparison between districts, a fatality rate can be calculated by comparing the number of vessel-related fatalities to vessels lost due to flooding, sinking or capsizing. Using this comparison, the difference between regions is more distinct. The lowest fatality rates (for fatalities associated with vessel loss) were along the Gulf of Mexico and Southeast U.S. coast, (the 8th & 7th Coast Guard Districts), as shown in Table 6. As expected, the highest vessel-related fatality rates occurred in the colder waters along the West and Northeast Coasts. The West Coast fatality rate is nearly double that of the 7th and 8th Districts.

<table>
<thead>
<tr>
<th>Coastal Area</th>
<th>District</th>
<th>Vessels Lost</th>
<th>Fatalities</th>
<th>Fatalities Per Lost Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>New England/Mid-Atlantic</td>
<td>1</td>
<td>150</td>
<td>79</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>57</td>
<td>42</td>
<td>0.74</td>
</tr>
<tr>
<td>Gulf/Southeast U.S.</td>
<td>7</td>
<td>120</td>
<td>47</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>148</td>
<td>56</td>
<td>0.38</td>
</tr>
<tr>
<td>West Coast</td>
<td>11</td>
<td>120</td>
<td>80</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>88</td>
<td>68</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>168</td>
<td>125</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 6

Casualty reports showed that vessel-related fatalities in the 7th and 8th Districts involved a number of factors, in addition to water temperature. Many of the vessels were lost suddenly, often in severe weather conditions. The 103 “warm water” fatalities occurred in 64 incidents. Of those 64 incidents, 29 vessels capsized. At least 19 of the capsizings occurred during severe weather, and 3 more resulted from fishing gear that snagged an obstruction. Of 17 vessels that sank, 3 occurred during severe weather and 5 began with flooding that was discovered too late for corrective action. Seven vessels disappeared with their crews. Thus, it is known that nearly half of the incidents occurred too quickly for the use of lifesaving equipment. It is likely that this percentage is understated, given the number of vessels that disappeared due to unknown causes.

Also, this group of incidents included 7 collisions and 4 fires. While each of those incidents ultimately led to a flooding, sinking or capsizing, they are not considered applicable, for the purposes of this comparison.

Of the 103 warm water fatalities, it is known that 21 persons were trapped in their vessel or its rigging. Again, it is not likely that these fatalities could have been prevented by the use of lifesaving equipment. Forty-seven persons entered the water and died from drowning or hypothermia. Seventeen persons died from unknown causes when their vessel disappeared. The remaining 18 fatalities resulted from the non-applicable incidents described above.

The incident reports confirmed that persons can survive much longer in warmer waters – but not indefinitely. Survival times in the warmer waters were measured in hours, instead of minutes for cold waters such as Alaska. For example, two crewmembers held onto a life ring after their vessel sank in the Gulf of Mexico. One of them was rescued by a Coast Guard aircraft approximately 18 hours after entering the water. The other crewmember succumbed
to hypothermia less than an hour before the aircraft arrived. In six other incidents, it was reported that crew members remained in the water up to eight hours before rescue.

Even in warmer waters, the importance of lifesaving equipment was apparent. Most survivors were recovered in either a Personal Flotation Device (life jacket) or a life raft. Conversely, most of the deceased crewmembers entered the water with no lifesaving equipment. The use of a life raft was reported 5 times. On two occasions, crewmembers had been in a raft for 2 days or more, until they were discovered by a passing vessel.

Finally, there is one incident that shows the importance of training. On 11 December 1997, the GULF KING 15 burned and sank in the Gulf of Mexico, approximately 60 miles south of Freeport, Texas. All three crewmembers were able to abandon the vessel. However, none of the crew knew how to properly deploy the life raft. Instead of launching the raft correctly, the crew removed the raft from its container and threw it overboard, uninflated. The three crewmembers clung to the undeployed raft for several hours. Eventually, one of the crew drowned after letting go of the raft. The vessel’s master, in a very weakened condition, drowned while being rescued by a Good Samaritan fishing vessel.

In summary, the review of warmer water incidents highlighted the following:

- **Some incidents happened too quickly for effective use of lifesaving equipment, or trapped crewmembers on board. To eliminate fatalities from such incidents, it would be necessary to prevent the vessel losses.**
- **Even with longer survival times in warmer waters, lifesaving equipment is essential.**
- **At least two fatalities could have been prevented by training in the use of lifesaving equipment.**
In Table 7, vessel-related fatalities are compared to all vessels lost to flooding, sinking or capsizing. The last 2 columns of the table show the vessel losses and fatalities as a percentage of their respective totals. For vessel losses, the highest percentages involved wood and steel hulls, respectively. However, those percentages are reversed for fatalities, with steel-hulled vessels accounting for 43% of the vessel-related fatalities.

The losses of steel and wood vessels tend to follow the overall population of documented fishing vessels, as shown in Table 3. Steel vessels were 24% of the population and 24.4% of the losses. Similarly, wood vessels were 48% of the population and 47.8% of the vessel losses.

It appears that the high percentage of fatalities on steel vessels is due to their size and area of operation. Using the 2004 documented vessel population; the average length for steel vessels was 71.7 feet. The average wood vessel was 44.1 feet in length. Thus, steel vessels would be capable of operating farther from land, with larger crews – two factors of increased risk. Further, the location of fatalities involving steel vessels tends to confirm that they operate in more remote and severe conditions. Of the 218 fatalities on steel vessels, 80% occurred along the West and Northeast coasts of the U.S. Conversely, the fatalities on wood vessels were more evenly distributed, with the highest percentage, 50%, along the West coast.

<table>
<thead>
<tr>
<th>Hull Material</th>
<th>Vessels Lost</th>
<th>Vessel-Related Fatalities</th>
<th>% Vessels Lost</th>
<th>% Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>339</td>
<td>98</td>
<td>39.10</td>
<td>19.33</td>
</tr>
<tr>
<td>Steel</td>
<td>222</td>
<td>218</td>
<td>25.61</td>
<td>43.00</td>
</tr>
<tr>
<td>FRP</td>
<td>156</td>
<td>94</td>
<td>17.99</td>
<td>18.54</td>
</tr>
<tr>
<td>Aluminum</td>
<td>10</td>
<td>11</td>
<td>1.15</td>
<td>2.17</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>1</td>
<td>0.46</td>
<td>0.20</td>
</tr>
<tr>
<td>Unknown</td>
<td>136</td>
<td>85</td>
<td>15.69</td>
<td>16.77</td>
</tr>
<tr>
<td>Totals</td>
<td>867</td>
<td>507</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7
Vessel-Related Fatality Trend

Beginning in calendar year 2000, there is an apparent downward shift in vessel-related fatalities, as shown in Figure 14. (For comparison purposes, the *ARCTIC ROSE* casualty is shown separately, as indicated by the dotted line.) The control charting methodology described earlier can be used to further evaluate this trend. Calendar years 1992 – 1999 were used to calculate the average, upper and lower control limits, (i.e., the “base period”). Using this methodology, the reduction in fatalities that began in 2000 can be considered statistically significant. In other words, the reduction signals an improvement in vessel-related fatalities that is not explained by the normal year-to-year variation. According to Wheeler, either of the following two criteria may be used to support this conclusion. The fatality trend meets both of them:18

1. One or more values (2002 & 2007) dropped below the lower control limit, OR:
2. Three of the four most recent values were closer to the lower limit than to the average.

This criterion is exceeded, since all of the values after 1999 are near the lower limit.

Thus, there has been a real, measurable reduction in fatalities. If this trend continues, one can expect an average of 20 vessel-related fatalities per year, instead of the previous 42. Actual counts can be expected to fluctuate between 7 and 32, (i.e. the new trend limits). The control chart also indicates that the trend has leveled off. To reduce the fatality rate further would require additional improvements in safety. Fatality trends, by District, are provided in Appendix E.

![Figure 14](image-url)

F/V Deaths When Vessel Is Lost, 1992 - 2007

All Districts

Upper Control Limit = 65.4
Average = 41.8
Lower Control Limit = 18.3

Fatalities = 507

Year

Comparison To Vessel Losses

The correlation between vessel-related fatalities and vessel losses was examined and found to be quite low. This is understandable, given that:

- Current safety regulations focus largely on saving lives and not on preventing vessel loss. In fact, the intent is to eliminate fatalities, regardless of vessel losses. The use of lifesaving equipment is described further on the following pages.
- Not all of the vessel-related fatalities occurred on vessels that were total losses. Some of the vessels returned to service after flooding, sinking or capsizing incidents.
- Between incidents, there is some variation in crew size. (i.e., the number of persons at risk, per vessel, is not constant.)
- Some incidents result in no fatalities, especially when crew members are rescued by other vessels in the vicinity of the incident. (i.e., Good Samaritan vessels.)

Use Of Safety Equipment

The summary data presented earlier shows that nearly 8 of 10 (78%) fatalities resulted from water exposure. The Commercial Fishing Industry Vessel Safety Act of 1988 and associated Federal Regulations, implemented in the Fall of 1991, address water exposure through emergency equipment, training and drills. Thus, one would expect a reduction in fatalities among the fishing vessels that have on board, and when crew members properly use, the required emergency equipment. Overall, there has been some apparent improvement. During the 10 years prior to the implementing regulations of the Fishing Vessel Safety Act, 1982 through 1991, there were 1045 fatalities, or an average of 105 per year. For the most recent 10 years, from 1998 through 2007, there were 477 fatalities, or 48 per year (54% lower). This high-level comparison suggests that the collective safety efforts have had the intended effect. However, this comparison includes other fatality types, such as on-deck accidents.

To get more details on the usage and benefits of emergency equipment, each of the casualty reports was reviewed individually, and the results are presented below.

From 1992 through 2007, the primary event leading to water exposure fatalities was vessel loss, followed by falling overboard. Of the 507 fatalities resulting from vessel loss, the usage rates of survival equipment, shown in Table 8, were very low. For PFDs (Personal Flotation Devices)/Survival Suits, the reported usage rate was 10%. The usage rates for rescue boats, EPIRB’s, and radios were 16%, 33%, and 30% respectively. Thus, it is reasonable to assume that many of these fatalities could have been prevented with use of the required emergency equipment. It is notable, however, that 142 of the 507 fatalities, or 28%, showed “available, no time for use” for PFD/Survival Suit utilization. Generally, these fatalities occurred when the vessel was lost suddenly, such as capsizing, or when a problem, such as engine room flooding, was not discovered in a timely manner. As noted previously, to eliminate such fatalities it would be necessary to prevent vessel losses.

19 The fatality figures for 1982 – 1991 were extracted from the Coast Guard’s CASMAIN database, which predates the MSIS system.

20 These figures are not “normalized” or referenced to the number of persons working on fishing vessels, fishing activity, economic changes or other factors, such as weather. Thus, the population is assumed to be constant throughout the period. Indeed, there would have to be a dramatic drop in the worker employment to negate the 54% reduction in fatalities.
A survival rate can be calculated by comparing the number of persons on lost fishing vessels to the number of survivors. From Figure 12 we know the greatest number of deaths from vessel flooding, sinking or capsizing occurred along the West and Northeast coasts (352 deaths and 168 lost vessels), apparently the result of more severe water conditions. Because of the more severe conditions, we also know that the use of lifesaving equipment is more crucial along the West and Northeast coasts. Thus, survival rates were prepared for the vessel-related fatalities in those cold water areas as shown on Table 9.

For incidents where survival suit/PFD usage is known, the results indicate that fishermen survive more than twice as often when survival equipment is properly used. This is considered to be a significant finding.

In fact, this result is understated. Of the 71 survivors that did not use a survival suit in cold waters, 46 of them were saved by using a life raft. Conversely, the fatalities among persons who used survival suits are explained in the investigation reports. Those 52 fatalities involved suits that were damaged, did not fit, or were not completely donned. This highlights the importance of maintaining lifesaving equipment and practicing its use. It is likely that emergency drills would have detected the damaged and inadequate survival suits before they were needed, thereby preventing as many as 52 fatalities.

<table>
<thead>
<tr>
<th>Survival Suit Usage</th>
<th>Persons At Risk</th>
<th>Survivors</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>123</td>
<td>71</td>
<td>58%</td>
</tr>
<tr>
<td>Not Used</td>
<td>241</td>
<td>65</td>
<td>27%</td>
</tr>
<tr>
<td>Unknown</td>
<td>139</td>
<td>15</td>
<td>N.A.</td>
</tr>
<tr>
<td>Overall</td>
<td>503</td>
<td>151</td>
<td>30%</td>
</tr>
</tbody>
</table>

Table 9

21 The “Not Applicable” values represent incidents where survivors were able to step directly onto another vessel without first entering the water, or other circumstances where the equipment was not required or not needed.
Voluntary Dockside Examinations

Data from the Coast Guard’s voluntary dockside exam program provides another indicator of safety. Since the program began in 1992, exam results were recorded in the marine safety databases. Vessels meeting all requirements were issued decals to display onboard. Of the 507 fatalities resulting from a vessel loss, 76% occurred on vessels with no decal or with a decal over 2 years old (unofficially “expired”) as summarized in Table 10. This is another indication that safety equipment, and the increased awareness gained through interaction with crewmembers during dockside exams, is saving lives.

Since 24% of the fatalities (121) occurred on vessels with decals, each of the investigation reports was reviewed for additional details. The reports showed that nearly all of the vessel losses occurred suddenly, with little time to respond. The fatalities occurred on 46 vessels that were lost by capsizing (20), flooding (20), collision (5), and fire (1). In nearly all of these casualties crewmembers either could not get to the survival equipment or, in a few cases, could not fully don a survival suit before entering the water. In eight of the incidents, the first indication of distress was an EPIRB alert. Once again, most of the current fishing vessel safety regulations focus on emergency response, in lieu of preventing vessel loss. In the incidents just described, it would be necessary to prevent the vessel losses in order to eliminate the fatalities.

<table>
<thead>
<tr>
<th>Decal Status</th>
<th>Dead/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>326</td>
</tr>
<tr>
<td>Current</td>
<td>121</td>
</tr>
<tr>
<td>Expired</td>
<td>59</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>507</td>
</tr>
</tbody>
</table>

Table 10
The casualty reports often mention that crewmembers were rescued by nearby vessels. However, this information was not captured in the Coast Guard databases in a way that could be electronically searched and analyzed. Therefore, the narrative information in each case report was read to determine how often crewmembers were rescued by Good Samaritan vessels.

The reports showed that Good Samaritan vessels rescued one or more crewmembers in 546 of the 1,903 vessel losses, or 29% of all incidents. The distribution of these cases, by year, is proportional to and parallels the overall vessel losses very closely, as shown in Figure 15. Throughout the 16 year period, between 23% and 39% of all lost vessels received Good Samaritan assistance.

The significance of Good Samaritan rescues becomes apparent when compared to vessels where no assistance was available, as summarized on Table 11.

Of the 546 vessels that received Good Samaritan assistance, only 38 of them resulted in one or more fatalities for a total of 52 persons (0.10 fatalities per vessel). Conversely, there were 184 vessels lost with fatalities but no Good Samaritan assistance. Those incidents resulted in 382 fatalities, or 2.08 fatalities per vessel.
Of the 38 vessels with fatalities during Good Samaritan assistance, the case reports showed that most of the vessels were lost suddenly. Twenty-one of the vessels capsized; twelve sank quickly; three vessels were involved in collisions, and; two vessels suffered an engine room explosion or fire. There was at least one survivor in each of these incidents making it possible to get some details about the deaths.

Of the 52 fatalities in this group, twenty-three persons died when they were either trapped inside their vessel or were entangled in fishing gear. Twenty persons died after entering the water, with no time to don a survival suit or PFD. Two more persons died in survival suits that were not fully closed. Five persons are missing, one was crushed between vessels during rescue, and one person died of hypothermia while in a life raft.

The accident reports showed that lack of lifesaving equipment was a critical factor in 15 of the 52 fatalities. Conversely, nearly all of the survivors were recovered in either survival suits or life rafts. Thus, it is concluded that:

- **A significant, but unknown, number of crewmember fatalities were prevented, since Good Samaritan vessels were present for nearly 30% of the vessels that were lost. Hypothetically, 1,084 lives may have been saved, if one assumes the same death rate as the vessels with no Good Samaritan assistance:**

 \[
 \text{382 deaths}/184 \text{ incidents} = 2.08 \text{ deaths per incident.}
 \]

 \[
 (546 \text{ assisted vessels} \times 2.08) - 52 \text{ actual fatalities} = 1084 \text{ fatalities prevented.}
 \]

- **While it is fortuitous that Good Samaritan vessels were present to rescue crewmembers, the true risk from vessel losses may be hidden, because crew members do not enter the water or are only exposed for a short period of time. Thus, Good Samaritans may be serving as a substitute for properly maintained lifesaving equipment. Yet, it would not be prudent to expect Good Samaritan vessels to be nearby when needed.**

- **Even when a Good Samaritan vessel is nearby, lifesaving equipment is essential.**
Overall, falls overboard resulted in the second largest number of fatalities, with 23% of the total, (217 of 934.) PFD/survival suit usage was reported for only two of the 217 fatalities, although “unknown” was reported for 85 persons. Also, investigating officers noted the use of alcohol in 28 of the fatalities and drug use three times.

Table 12 shows falls overboard fatalities, by District and year. By far, the highest number of fatalities occurred in the 8th District, accounting for 35% of the total. In fact, more than 43% of all 8th District fatalities were falls overboard, (77 of 178). Further, this is the only District that recorded falls overboard fatalities every year. Given that the 8th District has the warmest waters and, thus, the longest survival times, the number of falls overboard fatalities appear to be abnormally high. The data provides no reasons for this high number of fatalities. There has been some improvement in recent years. However, this appears to be a region where continued emphasis on safety equipment, drills and training would be beneficial.

The trend in falls overboard fatalities is shown in Figure 16, along with control limits. Similar to vessel-related fatalities, the number of falls overboard fatalities shifted downward after the 1999 Fishing Vessel Safety Task Force initiatives. Also, the fatality count for 2004 and 2006 are below the lower limit, indicating a significant improvement. Assuming a “level shift” in 2000, one can expect an average of 9 fatalities per year, instead of the previous 18. Actual counts can be expected to fluctuate between 1 and 17, (i.e. the new control limits.)
In this section, the most important factors leading to loss of life on fishing vessels were sought. The findings and conclusions are summarized as follows:

- **Descriptive Statistics** – For the sixteen year period of this report, there were 666 incidents that resulted in 934 fatalities, or an average of 58 fatalities per year. Those incidents included 184 of the lost vessels described earlier. The largest number of fatalities occurred in the 17th (Alaska), 8th (Gulf of Mexico), and 1st (Northeast U.S.) Coast Guard Districts, for 58% of the total. Incidents with one or two fatalities accounted for 91% of the cases and 74% of the fatalities. Consequently, it will be necessary to address a relatively large number of incidents in order to reduce fatality counts significantly.

- **Casualty Type** - When the incidents were grouped by casualty type, water exposure was the most prevalent factor. Vessel floodings, sinkings, and capsizings accounted for 55% of the deaths and missing persons. Another 23% of the fatalities were falls overboard. The next highest category, deaths from being struck by or caught in moving equipment, was 6% of the overall total.

- **Deaths From Vessel Loss** – For this sub-group of fatalities, loss of life was dramatically higher on the U. S. West and Northeast coasts than in other regions (69% of the total). The most likely reason for this is more severe conditions, especially cold water. Also, fatalities were higher during the months of October through January.

- **Fatalities In Warm Waters** – When presented as a rate (fatalities per vessel lost), the vessel-related fatalities were the lowest in the warmer waters of the Gulf of Mexico and along the Southeast U.S. coast. However, the number of incidents in that region was high enough to warrant further review. It was concluded that:

 > Some incidents happened too quickly for effective use of lifesaving equipment, or trapped crewmembers on board. To eliminate fatalities from such incidents, it would be necessary to prevent the vessel losses.

 > Even with longer survival times in warmer waters, lifesaving equipment is essential.

 > At least two fatalities could have been prevented by training in the use of lifesaving equipment.

- **Hull Material** – Forty three percent of all vessel-related fatalities occurred on steel vessels. Vessel population data showed that steel vessels are generally larger than vessels of other hull materials. Consequently, they are able to operate farther offshore, with larger crews. Casualty data confirmed that 80% of the fatalities on steel vessels occurred in regions with the most severe conditions – the West and Northeast coasts. Given the higher risk factors of crew size and distance from shore, it may be appropriate to focus preventive efforts on steel vessels.
• **Fatality Trends** - Beginning in calendar year 2000, there was a downward shift in the number of vessel-related fatalities. A control chart was used to confirm that the drop in fatalities was statistically significant, (i.e., more than normal year-to-year variation.) If the trend continues, one can expect an average of 20 vessel-related fatalities per year, instead of the previous 42. However, the trend has leveled off. To reduce the fatality rate further would require additional improvements in safety.

Further, it was found that the drop in fatalities was independent of vessel losses. This is understandable, given that current safety regulations focus on saving lives and not on preventing vessel loss.

• **Use of Lifesaving Equipment** – For fatalities related to vessel loss, the use of lifesaving equipment was very low. Also, for the West and Northeast coast incidents, survival rates were calculated based on lifesaving equipment usage. *Survival rates more than doubled when the equipment was used.*

Of the 507 fatalities resulting from vessel loss, only 24% of the vessels had participated in the voluntary dockside exam program and received a safety decal. Conversely, when fatalities occurred on vessels with decals, the vessels were lost suddenly, with little or no time to respond. In those casualties crewmembers were unable to use survival equipment or, in a few cases, could not fully don a survival suit. *In such incidents, it would be necessary to prevent the vessel losses in order to eliminate the fatalities.*
- **Good Samaritan Rescues** – When fishing vessels were lost, Good Samaritan vessels were on hand to rescue crewmembers for over 29% of the incidents. There were very few fatalities during such incidents, and when fatalities did occur, the vessels were lost quickly due to flooding, capsizing, collision or fire. Further, the small number of fatalities showed that lifesaving equipment is important, even when help is nearby. It was concluded that:

 Fatalities would have been significantly higher without the assistance from Good Samaritan vessels. Hypothetically, as many as 1,084 deaths may have been prevented.

 Because crew members have minimal or no water exposure in such incidents, Good Samaritans may be serving as a substitute for properly maintained lifesaving equipment. Thus, the true risk from vessel losses may be hidden.

- **Falls Overboard** – Overall, falls overboard resulted in the second largest number of fatalities, with 23% of the total. PFD/survival suit usage was reported for only two of the fatalities. It was learned that 35% of these fatalities occurred in the 8th District, (Gulf of Mexico.) Given that the 8th District has the warmest waters and, thus, the longest survival times, it is likely that many of the fatalities were preventable with PFD’s. This appears to be a region where continued emphasis on safety equipment, drills and training would be beneficial. Overall, there was a significant downward shift in falls overboard, beginning in calendar year 2000.

Taken together, the above findings indicate the following:

- **Deaths can be avoided when lifesaving equipment is available and properly used, as required by Title 46 of the Code of Federal Regulations, part 28.**

- **Factors leading to vessel loss will have to be addressed in order to reduce some fatalities below current levels, especially for incidents that occur suddenly, such as sinkings and capsizings.**
APPENDIX A: SELECTED CASUALTIES

Described below is a sampling of fishing vessel casualties that occurred in recent years.

Sinking of the ARCTIC ROSE.

Some time between 10:00 pm on 1 April 2001 and 3:35 am on 2 April 2001, the F/V ARCTIC ROSE sank in the Bering Sea. The first indication of distress was an EPIRB alert that was received by the 17th Coast Guard District command center at 3:35 am on 2 April. A Search and Rescue case was initiated and USCG aircraft were sent to the EPIRB location. At 0840, a Coast Guard C-130 arrived and located the vessel’s EPIRB at 58°56.9’N, 175°56.3’W. A large debris field and oil sheen was found in the vicinity. Shortly after arriving on-scene, the F/V ALASKAN ROSE recovered the body one crew member from the water. A subsequent search by Coast Guard aircraft, two cutters and two Good Samaritan fishing vessels in the immediate area failed to recover additional personnel. Fourteen persons are missing at sea and presumed dead.

The ARCTIC ROSE casualty was the subject of a Marine Board of Investigation. The board’s report is available on the Coast Guard’s “Homeport” internet portal, http://homeport.uscg.mil. Follow the folders to: Investigations -> Marine Casualty Reports.

Engine room fire and explosion.

October 20, 2002 – While en route to retrieve longline fishing gear in the Bering Sea, a fire erupted in the engine room of the fish processing vessel GALAXY. At the time, there were 26 persons on board. Believing that the ship’s fixed CO2 firefighting system had extinguished the fire, crew members began ventilating the engine room. Moments later a violent backdraft explosion ejected three crew members overboard. Two of the three crew members were quickly recovered. The third slipped away from the grasp of the ship’s designated rescue swimmer and disappeared. At about the same time, the master transmitted a MAYDAY call to a nearby Coast Guard LORAN station and began evacuating the vessel. The remaining 25 crew members assembled in two groups on the vessel; 21 on the aft top deck and 4 on the main deck forward. The crew members on the aft top deck evacuated the vessel in the following manner:

- 12 crew members (three in survival suits and nine without) successfully abandoned the vessel by jumping into the life raft. An unknown crew member cut the raft's sea painter with a knife and the raft floated free from the vessel. The F/V GLACIER BAY recovered the raft without incident approximately 1.5 - 2 hours later.
- Two crew members unsuccessfully attempted to abandon ship into the raft. One crew member (wearing a survival suit) attempted to jump into the life raft, but fell into the water and was not recovered. Another, with no survival suit unsuccessfully attempted to lower himself down the side of the vessel into the raft. The F/V CLIPPER EXPRESS recovered the latter person approximately 1.5 - 2 hours later without a pulse.

One crew member (wearing a survival suit) and a National Marine Fisheries Service observer, (no survival suit) jumped into the water and were recovered alive approximately 1.5 - 2 hours later by the F/V CLIPPER EXPRESS.
• Three crew members (none wearing survival suits) on aft top deck were rescued by U.S. Coast Guard helicopter CG6021.

The remaining four crew members on the forward main deck, all wearing survival suits, were rescued as follows:
• One abandoned the vessel by jumping into the life raft as it floated past the bow of the FPV GALAXY.
• One abandoned the vessel into the water and was recovered by the F/V BLUE PACIFIC within approximately five minutes of entering the water.
• Two were rescued by U.S. Coast Guard helicopter CG6021

Of the 26 persons on board, two are deceased and one is missing and presumed dead.

On October 22, 2002, while underway in the Bering Sea, a crewmember was swept overboard while securing a life raft on the vessel's main deck. Subject was hit by a large unexpected wave.

F/V CLIPPER EXPRESS was returning to Dutch Harbor after assisting with rescue and search of survivors from the F/V GALAXY. The CLIPPER EXPRESS had picked up personnel of the F/V GALAXY and a life raft that had been dropped by a CG aircraft. While en-route back to port, the raft came loose and was being tossed around by the wind on the vessel's fwd deck. Three men went out on deck to secure the raft. One of the men went back up to the wheel house while the other two worked to secure the raft. None of them were wearing any sort of PFD.

One crewmember was under the ladder going up to upper deck and working to secure the raft. A large wave approx. 35-45' came from the port side unexpectedly and washed him overboard. A search was immediately initiated by the vessel and Coast Guard Aircraft. However, the crewmember was not located.

June 6, 2000 – While returning from a 3-day fishing trip, the INFINITY began taking on water and sank quickly by the stern. The vessel was lost approximately 17 miles southeast of Cape Elizabeth, along the coast of Maine. One of the three crewmembers was rescued and the other two were recovered deceased. Among the many findings, the investigating officer’s report included the following:
• An inexperienced helmsman did not notice the vessel losing freeboard by the stern. When the flooding was discovered by another crewmember, the vessel’s stern was nearly under water.
• Water entered the vessels aft compartment through a leaking rudder post. There was no functioning bilge pump in that space.
• All of the crewmembers donned survival suits. However, all of the suits were well beyond their service lives. Significant amounts of water were found in the suits of the two deceased crewmen, because they did not fit properly. One of the two suits was too small. A zipper jammed on the other.
• The vessel’s life raft did not release.
• The vessel’s EPIRB floated free, functioned properly and facilitated a quick response and recovery by Coast Guard aircraft.
Fatality while fishing alone.

March 28, 2002 - The F/V *DUSTIN SEA* was discovered beached on George Island, Alaska with no one on board. The vessel was found with the stabilizers set, the engine in gear and with the auto-pilot set. The vessel’s only crewmember was found by another vessel, near the harbor entrance. The deceased was reported to have an abrasion near the hairline on his head. The subject had reported previously that he was having problems with his starboard stabilizer; he may have been knocked/slipped overboard when setting it.

Overloading causes vessel to capsize.

December 13, 2003 - The F/V *ATLANTA* a 70 GT scalloper capsized and sank approximately 25 nm south of Chatham, MA with seven crewmen on board. Two crewmen died and one is missing.

At the time of the incident the vessel was in the process of bringing the loaded port and starboard scallop dredges on board an already loaded deck. After placing the loaded starboard dredge on deck the crew proceeded to haul the port dredge on board when the vessel began to list to port, causing the deck cargo to also shift to port. Seeing this the captain accidentally grabbed the starboard dredge control by mistake, lifting the loaded dredge off the deck and causing it to swing to the portside. This caused the vessel to heel further and finally capsize.

Five crewmen were able to launch and enter a life raft, where they fired off a flare which was seen by the nearby F/V *OCEAN REIGN*. At some point one of the crewmen in the raft died from hypothermia. All five were taken into port on the *OCEAN REIGN* arriving in New Bedford, MA on the morning of 14 December. The captain’s body was later recovered from the water. One crewman is missing and presumed dead.

Master and mate drowned while trying to save their vessel

October 7, 2000 – While heading to fishing grounds off the coast of Virginia, flooding was discovered in the engine room of the *CAROLINA BREEZE*. Attempts to dewater the vessel with onboard pumps and pumps supplied by Coast Guard helicopters were not successful. Five of the seven crewmembers were hoisted from the vessel. However, the master and mate remained onboard, attempting to save the vessel. When the helicopter returned the vessel was gone. The mate was found hours later floating in the water in his immersion suit. The master was recovered from the vessel five days later. He was found in the pilothouse with his immersion suit on. The mate stated that the vessel was struck by a large wave over the stern and sank in less than one minute.

Capsizing of the NORTHERN EDGE.

December 20, 2004 - The F/V *NORTHERN EDGE*, a 75ft scalloper with a crew of six persons capsized and sank approximately 45 miles off the coast of Massachusetts. One of the crewmembers was able to enter the vessel’s life raft, where he found the survival kit and used flares to hail other vessels working in the area. He was picked up by the F/V *DIANE MARIE* approximately 40 minutes after the sinking. The other 5 crewmembers are missing and presumed dead.

The *NORTHERN EDGE* was towing two scallop dredges, when it suddenly listed to the starboard side, possibly because one of the dredges became entangled on an obstruction. At that time, five crewmembers were on deck and the captain was in the wheelhouse. Two crewmen cut the life raft loose and it fell in the water. Another crewman jumped in the water to retrieve the raft. Grabbing the life raft painter lanyard (line) the crewman swam back toward the vessel. The vessel then rolled further knocking him underwater before he could hand off the lanyard. Once the crewman resurfaced, he swam back to the life raft, popped it open and climbed
Training and effective use of lifesaving equipment.

On 16 March 2006. While inbound after four days of fishing, the CELTIC PRIDE experienced uncontrollable flooding. At the time, the vessel was approximately 80 miles southeast of Portland, Maine. After determining that the vessel could not be saved, crew members made a distress call, donned survival suits, launched a life raft and activated the EPIRB. The vessel sank within minutes of abandonment. Approximately two hours after transmitting the EPIRB alert, all crew members were rescued by a Coast Guard helicopter. During the investigation it was learned that all crew members participated in emergency drills on a regular basis, which is believed to be an important factor in the crew’s survival.

Disappearance of the LADY LUCK.

On the night of 31 January 2007 the fishing vessel LADY LUCK sank off the coast of Cape Elizabeth, ME. The vessel's EPIRB started transmitting early the next morning and a CG search effort ensued. There were no other indications of distress. A search revealed only a small debris field and oil slick. The two crewmembers who were on board at the time are missing and presumed deceased.

On 13 March 2007, a remotely operated submarine located the LADY LUCK in approximately 530 feet of water, resting upright, with no visible damage. The vessel’s life raft was found fully inflated, but still attached to the vessel. In investigator’s findings included the following:

- Because there were no survivors and the vessel was not recovered, the cause of the sinking is unknown. The most likely cause was either rapid flooding or sinking, leaving the crew members little time to abandon the vessel.
- The life raft may not have been properly installed, because it did not release from the vessel.

This casualty was the subject of a Formal Investigation. The investigator’s report is available on the Coast Guard’s “Homeport” internet portal, http://homeport.uscg.mil. Follow the folders to: Investigations -> Marine Casualty Reports.
On 18 March 2007 the *EXODUS EXPLORER* ran aground while transiting into Adak Harbor, Alaska and sank in approximately 6 fathoms of water. It was learned that a helmsman, after a full day of fishing, fell asleep at the wheel while the vessel was underway at full throttle. Three crew members and one Fisheries Service observer donned survival suits and abandoned the vessel to a life raft. All survivors were rescued by a nearby fishing vessel.

September 28, 2007. While fishing for scallops near Nantucket, RI, the fishing vessel *JACOB ALAN* experienced uncontrollable flooding. After transmitting a distress call, all five crew members and a Fisheries Service observer donned survival suits, deployed the inflatable life raft and EPRIB. The crew members were rescued by a nearby fishing vessel. All crew members attributed their survival to recent lifesaving and survival training that they received.
APPENDIX B: ABOUT THE DATA SOURCES

The data for this review was extracted from the Coast Guard’s marine safety databases, known as MSIS (Marine Safety Information System) and MISLE (Marine Information for Safety and Law Enforcement). Casualty data was collected in MSIS from 1 January 1992 through 13 December 2001. Thereafter, MSIS was replaced by the MISLE system.

The following criteria were used to extract fishing vessel casualty data from the casualty databases:
- The service of the vessel, at the time of the casualty, was recorded as a fishing vessel.
- At least one crewmember was listed as dead or missing, OR;
- The vessel was reported as a total loss.

Quality Control - As part of the case review, described in more detail below, case reports not meeting the criteria for this study were eliminated. This included the following:
- Duplicate records.
- Vessels that were damaged, but not a total loss.
- Vessels that were misclassified or not being used for fishing.
- Fatalities from natural causes, (e.g., heart attack, stroke, etc.).

Also, to get the most complete data set possible, records of the Fishing Vessel Safety program office were used to crosscheck query results.

Assumptions and Constraints

Data Collection - It is important to note that policy does not specifically require all of the information needed for this study, although the information system was capable of recording most of the information in various locations. In fact, investigating officers have significant discretion in the amount of information collected based on the severity of the incident, reporting policy, and other factors.

Often, vessel casualties were only investigated because they resulted in pollution - not to determine the cause of the vessel loss. Thus, each case report, including the narrative entries, was reviewed in order to fill in missing data items, which provided additional details. Results were dependent upon the writing style and thoroughness of the investigating officer, which varied from a few brief sentences to many pages. Even with this extensive case review process, data elements often resulted in values being shown as "Unknown." Of course, more automated and easily repeatable methods of data analysis are preferred to the labor-intensive procedures used in this study. Policy, data reporting, and data quality procedures are regularly reviewed to support future data analysis requirements.

Missing Values - In many cases where a vessel was lost and all persons on board were rescued, few details were available about the vessel, the use of lifesaving equipment, or the persons on board. For these cases, the lifesaving information is recorded as “Unknown”.

Population v. Sample Size - For purposes of this study, the data set is considered to be the entire population of lost fishing vessels and personnel casualties. Those are incidents with
serious consequences and will rarely escape the Coast Guard's attention. It is believed that any cases missing from the data, due to lack of notification, clerical, or other error, are few in number and will not affect the results of this study. Further, the number of records available for analysis is large – 1,903 for lost vessels and 934 for personnel loss, which would negate the affect of any missing records. Of more concern to this study are the previously mentioned missing values that had to be recorded as "unknown."

Normalization - As noted in the Fishing Vessel Task Force report, demographics about the size and composition of the fishing industry, including the number of workers, the number of state numbered vessels, and vessel utilization rates, are not readily available. Further, recent attempts to estimate the worker population have resulted in widely varying estimates. Thus, most of the figures presented in this document are "as reported" to Coast Guard information systems without statistical normalization or leveling. (An exception to this is a review of the subset of documented vessel losses. The population of documented vessels is in the Coast Guard’s information system.) No comparisons with other industries were made in this report.

The Office of Vessel Activities, in the Prevention Policy Directorate has recognized the need for better population data and intends to sponsor research in this area.

Reviewer Interpretation/Bias - In the MSIS and MISLE systems, investigating officers can describe a casualty as a series of events, each with associated causes. The case reviewers for this study used the first reported event as the cause of vessel loss or fatality. For example, a vessel might suffer a hull failure, followed by flooding, then sinking. In this example, an investigator might report, given the best available information, the first event as flooding, without knowing of the hull failure event. If the investigator provides no events, a case reviewer may determine the cause of vessel loss as sinking, without knowing of the hull failure or the flooding. This, of course, may insert additional bias into the data. However, this method was preferred to leaving a large number of values as "unknown."
APPENDIX C: CONTROL CHARTING METHODOLOGY

The methodology for developing the control charts used in this document is summarized as follows:

- Use the average of the individual observations (X), for the central line.
- Calculate the average moving range, (mR). This is done by finding the difference in the individual observations, the moving ranges, (e.g., the difference between the 1994 vessel losses and the 1995 losses is 36), then averaging the moving ranges.
- Calculate the upper control limit, (UCL). UCL = X + (2.66 x mR).
- Calculate the lower control limit, (LCL). LCL = X - (2.66 x mR).
- Display the individual values, the central line, the upper control limit, and the lower control limit on a line chart.

The trend line of the individual observations is interpreted by comparing them to the upper and lower control limits. Values that are consistently close to or cross one of the limits are considered “out of control.” In other words, the change cannot be explained by normal variation.

APPENDIX D: HISTORIC CASUALTY COUNTS

Shown below are counts of lost fishing vessels and fatalities from a previous study, an older data source, known as CASMAIN, and the more modern information systems that were used in this report. The CASMAIN database contains summary data only, but none of the additional details used in this study.

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessels Lost</th>
<th>Fatalities</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>270</td>
<td>87</td>
<td>CASMAIN database, (VCAS table)</td>
</tr>
<tr>
<td>1983</td>
<td>293</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>280</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>279</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>187</td>
<td>98</td>
<td>Marine Safety Information System (MSIS)</td>
</tr>
<tr>
<td>1987</td>
<td>207</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>224</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>255</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>192</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>217</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>139</td>
<td>85</td>
<td>Marine Information for Safety & Law Enforcement (MISLE)</td>
</tr>
<tr>
<td>1993</td>
<td>148</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>153</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>117</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>166</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>138</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>125</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>123</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>85</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>133</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>122</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>107</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>112</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>99</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>75</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>61</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E: VESSEL-RELATED FATALITIES, BY DISTRICT

Vessel-Related Fatality Trend, First District (Northeast)

Vessel-Related Fatality Trend, Fifth District (Mid-Atlantic)
Vessel-Related Fatality Trend, Seventh District (Southeast)

Vessel-Related Fatality Trend, Eighth District (Gulf Of Mexico)
Vessel-Related Fatality Trend, Seventeenth District (Alaska)
APPENDIX F: VESSEL LOSSES, BY DISTRICT & YEAR

Vessel Losses, By Year & Documentation Status
First District (Northeast)

```
Year
```

Vessel Losses, By Year & Documentation Status
Fifth District (Mid-Atlantic)

```
Year
```
Vessel Losses, By Year & Documentation Status

Seventh District (Southeast)

Year

Number

Documented State Numbered

Vessel Losses, By Year & Documentation Status

Eighth District (Gulf Of Mexico)

Year

Number

Documented State Numbered
Vessel Losses, By Year & Documentation Status
Seventeenth District (Alaska)