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Abstract 
 Significant changes in the design and operation of commercial ships have 
occurred over the last several decades.  These changes, and their impact on the intact 
stability performance of ships, have motivated the development of the second generation 
intact stability criteria by the IMO Subcommittee on Stability and Load Lines and on 
Fishing Vessels Safety (SLF).  Parametric roll resonance, pure loss of stability, and 
broaching-to are among the primary modes of stability failures which are being 
addressed.  The second generation intact stability criteria are planned to have a multi-
tiered structure.  As the direct assessment of dynamic stability may not be necessary for 
all ships covered by IMO instruments, the first two tiers consists of level 1 and 2 
vulnerability criteria that   are used as a preliminary design process check of dynamic 
stability failure risk.  This report describes the U.S. contribution to this development, 
including the three modes of stability failure listed above.  It also contains a justification 
of the U.S. position at SLF on dead ship condition criteria, as well as an overview of 
possible methods for direct stability assessment procedures.  
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1 Introduction 

1.1 The Context of the Work 
 

 Sufficient intact stability is one of the most fundamental requirements for any 
type of vessel.  While different stability criteria have been developed since the 1930s, 
including national stability standards and classification society rules, the first 
international stability regulations were formulated in the 2008 Intact Stability (IS) Code, 
which came into force in July 2010, adopted through resolution MSC.267(85) of the 
Maritime Safety Committee (MSC) of the International Maritime Organization (IMO)  

 The origin of the first-generation intact stability criteria, which are the foundation 
of the 2008 IS code, can be traced to the pioneering work of Rahola (1939), as well as the 
early versions of the weather criterion developed in the 1950s. The history of 
development and the background of these criteria are described by Kobylinski and 
Kastner (2003). 

 The development of the second generation of intact stability criteria started in 
2002 with the re-establishment of the intact stability working group by the IMO 
Subcommittee on Stability and Load Lines and on Fishing Vessels Safety (SLF) – see 
Francescutto (2004, 2007). However, due to other priorities, the actual work on the 
second generation of intact stability criteria did not start until the 48th session of the SLF, 
in September 2005.  The working group decided that the second generation of intact 
stability criteria should be performance-based and address three fundamental modes of 
stability failures (SLF 48/21, paragraph 4.18): 

 Restoring arm variation problems, such as parametric excitation and pure loss of 
stability; 

 Stability under dead ship condition, defined by SOLAS regulation II-1/3-8; and 

 Maneuvering related problems in waves such as broaching-to. 

A similar formulation was included in the preamble of the 2008 IS Code, as a direction 
for long-term development. However, the restoring arm variation problem was 
considered as two modes of parametric roll and pure loss of stability; hence, four stability 
failure modes were considered. 

 The first steps in the development of the criteria have shown that the development 
is a formidable task.  Among the first proposals for these criteria was that which was 
contained in SLF 49/5/2 and with supporting information presented in SLF 49/INF.3.  
This proposal suffered from multiple theoretical shortcomings and was rejected by the 
working group at 49th session of SLF (July 2006). The development of second generation 
of the intact stability criteria clearly required a new approach. 

 A significant part of that consideration was general agreement that the second 
generation criteria should be based on physics of the phenomena leading to intact 
stability failure.  Design and modes of operations of new ships take on characteristics that 
cannot, with confidence, rely solely on the statistics of failures and regression-based 
techniques.  Also, there was general agreement of the desirability of relating the new 
criteria to probability, or some other measures of the likelihood of stability failures, as 
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methods of risk analysis have gained greater acceptance and become standard tools in 
other industries. 

 These considerations lead to the formulation of the framework for the second 
generation of intact stability criteria, as described in SLF 50/4/4 and discussed at the 50th 
session of SLF (May 2007).  The key elements of this framework were the distinction 
between performance-based and parametric criteria, and between probabilistic and 
deterministic criteria.  Special attention was paid to probabilistic criteria; the existence of 
the problem of rarity was recognized for the first time and a definition was offered.  Also, 
due to the rarity of stability failures, the brute-force approach for the evaluation of 
probability with numerical tools was recognized to present a significant challenge. 

 By that time (2007), there was already some experience in the maritime industry 
on how to handle issues related to dynamic stability.  Following a parametric roll 
accident with APL China (France, et al., 2003), the American Bureau of Shipping (ABS) 
issued a guide on assessment of parametric roll for containerships (ABS, 2004).  The 
guide offered an optional class notation by following a multi-tiered assessment 
procedure.  The first level, susceptibility criteria, was formulated upon changing GM in a 
regular waves and the Mathieu equation.  If a ship was found susceptible to parametric 
roll, then a more complex criterion, severity criterion, was applied. This “severity” 
criterion involved the calculation of the full GZ curve in waves and the numerical 
integration of the roll equation.  If the roll response was “severe enough” (based on some 
specified level), then advanced numerical simulations were applied and ship-specific 
operational guidance was developed.  

 Although conservative, the susceptibility and severity criteria were still capable of 
distinguishing ships for which the occurrence of parametric roll was not possible. 
Shin, et al. (2004) describes the application of the susceptibility criteria to a tanker, 
which is not known to have any problems due to parametric roll.  Both susceptibility and 
severity criteria have shown that parametric roll is not a problem for a tanker.  

 Application of the ABS guide to two series of ships has shown that the multi-tier 
approach has significant practical benefits.  Because numerical simulations are expensive, 
the susceptibility and severity check provide a formal justification for such expenditures, 
ensuring that this work is done only for ships that may suffer from parametric roll. 

 In addition to the efforts of the classification societies, significant progress was 
achieved in developing training programs in order to enable crews to be fully aware of 
parametric roll phenomenon.  An instructional video produced by Herbert Engineering 
Corporation is one successful example of this activity1. 

 Analysis of this experience lead to an understanding that the multi-tiered 
approach should be applied for the development of the second generation intact stability 
criteria, as a way to avoid unnecessary work; the idea of vulnerability criteria was first 
formulated in the paper by Belenky, et al. (2008), see Figure 1.1.  This paper also gave a 
broad review of the physics background of the dynamic stability failures under 
consideration. This paper, in a sense, played a role of “explanatory notes” to SLF 50/4/4 
and was further submitted for information to the 51st session of SLF (SLF 51/INF.4). 

                                                 
1 Trailer available at http://www.herbert.com/videos/ParametricRoll/  
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 Figure 1.1 describes the current view of the multi-tiered approach for intact 
stability criteria (SLF 53/WP.4).  In this process, the criteria contain in section 2.2 and 
then that of Section 2.3 of Part A of the 2008 IS Code is applied for all ships covered 
under IMO instruments.  Each ship is also checked for vulnerability to pure loss of 
stability, parametric roll, and broaching and surf-riding phenomena using level 1 
vulnerability criteria (L1). If a possible vulnerability is detected, then the level 2 criteria 
(L2) are used, followed by direct stability assessment (DA), if necessary. If the direct 
stability assessment shows an elevated level of risk for the respective mode of stability 
failure, then ship specific operational guidance (OG) may be developed, which is subject 
to the requirements of the flag administration (ADM).  If vulnerability to each mode of 
stability failure was not detected, or the risk of stability failure is not considered 
excessive, then no additional requirements must to be satisfied.  The process is repeated 
for all three stability failure modes.  Dead ship conditions currently are excluded from 
consideration– which is discussed further in section 5. 

 
Figure 1.1 Multi-tiered Approach for the Second Generation of Intact Stability Criteria 

 Meanwhile, the intersessional correspondence group established by the 50th 
session of SLF was tasked to further develop the framework and create the draft 
terminology for the second generation of intact stability (SLF 50/WP.2 Annex 6). The 
draft framework developed by the intersessional group (SLF 51/4/1 Annex 2) was the 
next step after SLF 50/4/4, as it represented the common understanding of the 
correspondence group.  In particular, the document made a clear distinction between a 
criterion and a standard– the former being “an instrument of judging” and the latter is a 
boundary “between a good and bad” outcome. The terminology list is included as Annex 
4 of SLF 51/4/1. Both the framework and the terminology list are considered as working 
documents. 

 After the discussion of these documents at the 51st session of SLF (July 2008), the 
intact stability working group agreed on the framework of the second generation intact 
stability criteria (Annex 1 SLF 51/WP.2) and commissioned the intersessional 
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correspondence group to develop preliminary specifications of the second generation 
intact stability criteria, and to collect information relevant to development of vulnerability 
criteria and sample ship data to test these criteria (SLF 51/WP.2). 

 During the discussions of the working group there was expressed a notion that, in 
general, it is bad practice to submit completely new technologies to SLF.  It should be 
first published in a technical journal, preferably also being presented and discussed at 
technical conferences. In particular, the international conferences on stability of ships and 
ocean vehicles (also known as STAB) and international ship stability workshops (ISSW) 
are very appropriate venues to discuss these advances.  Such presentations, while being 
unofficial from the IMO perspective, are very important as they allow discussion of the 
technical background of new proposals among experts and therefore, improve the quality 
of the future submissions. The 10th STAB conference included a number of papers 
presented on vulnerability criteria and direct assessment: Kobylinski (2009), Bassler, et 
al. (2009), Belenky, et al. (2009a), Umeda, et al. (2009), Shigunov, et al. (2009) and 
others. These discussions were also continued at the 1st International Workshop on 
Dynamic Stability Consideration in Ship Design (DSCSD), see Kobylinski (2009a).  

 The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 
established a Strategic Research Committee on Estimation Methods of Capsizing Risk for 
the IMO New Generation Stability Criteria (SCAPE Committee) in 2005. Outcome of 
this program was reported in five sessions of JASNAOE; some other results were also 
reported in English at the Osaka Colloquium (Ikeda, et al., 2008).  An overview of this 
work is available from SLF 51/INF.6.  In the meantime, certain developments in the field 
were affected by the increasing consideration and practical formulation of the so-called 
“critical wave groups” approach.  This was used for probabilistic intact stability 
assessment during the European SAFEDOR project (e.g. Themelis & Spyrou, 2007), 
which allowed for a practical interfacing between the deterministic and probabilistic 
viewpoints.  SNAME established a Dynamic Stability Task Group whose purpose is to 
provide a detailed review of developments in the field of dynamic stability (SLF 53/3/3). 
SNAME has also funded research on the next generation of stability criteria for small 
fishing boats (Womack and Johnson, 2005). 

 These and other discussions held in the professional community were one of the 
factors why the intersessional correspondence group was able to succeed in gathering a 
very large amount of information (SLF 52/INF.3) and formulating several options for 
preliminary specifications of vulnerability criteria (SLF 52/3/1).  

 Following the IS Code coming into force, and reflecting the importance of the 
development of the second generation of intact stability criteria, the 52nd session of SLF 
(January 2010) has changed the title of the agenda item from “Revision of Intact Stability 
Code” to “Development of New Generation of Intact Stability Criteria.”2 The intact 
stability working group agreed on the preliminary specification for the second generation 
intact stability criteria, adopting the principle of increasing complexity within the multi-
tiered approach (Annex 2 SLF 52/WP.1).  The intersessional correspondence group was 
tasked to collect additional methodologies and refine proposals on the vulnerability 
criteria level 1 and 2 for all the modes of stability failures. 

                                                 
2 The term “New generation of intact stability criteria was replaced by the second generation intact stability 
criteria at the 53rd session of SLF, following the proposal from Poland (SLF 53/3/5) 
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1.2 The Contents of the Work 
 

 This report describes the work that was commissioned by the Naval Architecture 
Division of the Office of Design and Engineering Standards of the United States Coast 
Guard (CG 521) to the Naval Warfare Center Carderock Division (NSWCCD – David 
Taylor Model Basin, Seakeeping Division, Code 55) to provide technical support services 
in FY 10, which covered a significant part of the intersessional period between the 52nd 
and 53rd session of SLF (the 52/53 intersessional period). The objective of this R&D 
work is to support U.S. participation in the work of the intersessional correspondence 
group.  In particular, the development and testing of the level 1 and 2 vulnerability 
criteria for all modes of stability failures is the top priority of this work, as they were 
expected to be the main focus of the working group at the 53rd session of SLF.  Other 
objectives included relevant development towards the direct stability assessment 
methods.  The work also included the development of documents to be submitted to 
intersessional correspondence group and to SLF directly.  

 Based on the work described in this report, the U.S. contribution to the 
intersessional correspondence group was developed and submitted (Annex 5 
SLF 53/INF.10). 

 Proposals for level 1 and level 2 vulnerability criteria were developed for 
parametric roll (Section 2), pure loss of stability (Section 3) and maneuvering related 
problems in waves (Section 4). All of the criteria were tested on a sample population of 
17 vessels (described in Section 7). It was shown that all of the developed criteria 
successfully identified ships with a higher risk of particular modes of intact stability 
failure. 

 At the 52nd session of SLF, the intact stability working group decided to use the 
modified weather criterion as the level 1 vulnerability criterion for the dead ship 
condition (SLF 53/3).  Therefore, the development was focused on the weather criterion 
as a possible candidate for vulnerability criteria. However, additional analysis has shown 
that it is not likely this will be possible (Section 5). The same position was taken by the 
Poland (SLF 53/3/6). Supported by the results of the analysis in Section 5 of this report, 
the U.S. delegation supported the Polish position. This position turned out to be an 
acceptable approach to the problem as the working group also supported these positions; 
there was also a problem related with integration of the vulnerability check in the dead 
ship condition with 2008 IS code. As a result, the working group has recommended 
postponing the development related to dead ship condition, focusing instead on another 
additional mode of stability failure – excessive accelerations (SLF 53/WP.4). 

 While the focus of the 52/53 intersessional period was the vulnerability criteria, 
fueled by SLF priorities, work has also started on the direct stability assessment methods.  
Section 6 of the report presents a comprehensive review of the methods available for 
solution of the problem of rarity. This part of the work also underwent extensive 
discussion in meetings of the technical community (Belenky, et al., 2010a, 2010b). 

 The 52/53 intersession period was characterized by very intensive discussions in 
the professional community concerning vulnerability criteria.  It was a prominent subject 
at the 11th ISSW in Wageningen, the Netherlands.  Some of the work included in this 
report was also presented and discussed there as well (Peters, et al., 2010).  



 

 8

 Understanding that these discussions hold a vital element for success, the 2nd 
International Workshop on Dynamic Stability Consideration in Ship Design (DSCSD) 
was organized by the U.S. Coast Guard and sponsored by Japan Ship Technology 
Research Association. The workshop was held in Windsor, UK in September 2010.  The 
discussion among the experts revealed the tendency of vulnerability criteria proposals to 
converge, indicating a good chance for agreement and harmonization during the 53rd 
session of SLF. 

 Therefore, the additional work after the workshop was mostly focused on 
facilitating possible agreement at SLF 53.  Following this, a joint proposal with Japan 
was developed for the maneuvering related problems in waves (SLF 53/3/8).  Lengthy 
discussions with Prof. N. Umeda (Osaka University, Japan) were instrumental in reaching 
the agreement on surf-riding and broaching-to issues. 

 Another individual whose contribution was instrumental for this work was Prof. 
K. Spyrou (National Technical University of Athens, Greece).  He proposed an 
alternative to the level 1 vulnerability criteria on parametric roll.  This alternative 
contained elements of the common background between several proposals which were 
used for the development of the document (SLF 53/3/7).  He also collaborated with 
V. Belenky and C. Bassler on vulnerability criteria level 1 and 2 for surf-riding.  
Recognizing Prof. K. Spyrou’s significant contribution to the work described within this 
report, he was invited to be one of the authors of this report. 

 The criteria development described in this report was based on the results of 
research funded by the Office of Naval Research (ONR), under the ongoing research 
project, “A Probabilistic Procedure for Evaluating the Dynamic Stability and Capsizing 
of Naval Vessels” under the direction of Dr. L. Patrick Purtell. Major works developed 
under this project and used in this report are Belenky and Weems (2008, 2008a), 
Belenky, et al. (2008a, 2009, 2010), Bassler, et al. (2008; 2009). Another major project, 
with results that were used for this work, was funded by NAVSEA, under the direction of 
Mr. James Webster (Bassler, et al., 2010; 2010a, Belenky and Bassler 2010, Minnick, et 
al., 2010; 2011; 2011a).  Technical discussions regarding the content of this report from 
Dr. Arthur Reed, Mr. Martin Dipper, Jr. (NSWCCD) and Prof. N. Umeda (Osaka 
University) is greatly appreciated.  The authors also would like to recognize fruitful 
discussions with A. Francescutto and G. Bulian (University of Trieste), B. Altmayer, 
O. Hympendahl, R. Pereira, and V. Shigunov (Germanischer Lloyd), A. Rozen and M. 
Palmquist (Seaware, Sweden), and Y. Kim (Seoul National University) and H. Son 
(Korean Register of Shipping). 

 As the development of the second generation intact stability criteria gains 
momentum, additional people with different technical backgrounds are becoming 
involved.  Clear communication of the motivations, objectives, and approaches of this 
development becomes paramount for the success of this enterprise.  To facilitate this 
communication, this report consists of a three-tiered structure in its main part (Sections: 
2, 3, 4 and 5). The first subsection of each of these sections is an executive level, graphic-
based brief explanation of the physical background of each of the phenomena. The 
second subsection in each of these sections describes the main mathematical model that is 
used to develop the criteria; the second subsection is intended to primarily for regulators 
and class society engineers who would like to gain deeper understanding of the ongoing 
development. The rest of the sections describe the technical details of the methods.  
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2 Vulnerability Criteria for Parametric Roll 
 
This section describes the development of vulnerability criteria for parametric roll, 

including some general background information on the physics of parametric roll 
phenomenon, the basic mathematical model used for detecting susceptibility to 
parametric roll, and proposals and testing of levels 1 and 2 vulnerability criteria.  Sample 
calculations were performed using the characteristics of 17 ships. 

2.1 Physical Background 

2.1.1 Changing Stability in Waves 
 

 When a ship is sailing through waves, the submerged part of the hull changes.  
These changes may become especially significant if the length of the wave is comparable 
to the length of the ship.   

 As a first example, one may observe the changes that occur when the trough of a 
wave is located amidships (see Figure 2.1).  For most ships, the upper part of the bow 
section is usually wide, due to bow flare.  Bow flare provides protection from spray and 
green water shipping, and also allows additional cargo to be stored on deck.  As a result, 
the bow flare makes the waterplane larger, if the upper part of the bow section becomes 
partially submerged. 

 The upper part of the aft section of the hull is typically even larger.  Apart from 
cargo stowage considerations, this section must also provide room for steering 
machinery.  Therefore, the after part of the waterplane also increases, once the upper part 
of the aft section becomes submerged. 

 

 
Figure 2.1 Changes in Hull Geometry when a Wave Trough is Amidships (a) 3D View (b) 

Waterplane 

 

 Unlike the bow and aft sections, the midship section of most ships is almost 
nearly wall-sided.  This means that very little change occurs in the waterplane width with 
variations in draft.  When the wave trough is amidships, the draft at the midship section is 
low, but as the hull is wall-sided in this region, there is little waterplane change.  As a 
result, when the wave trough is located around the midship section, the overall 
waterplane area is increased (see Figure 2.1b). 

M(n) 

Wave trough amidships 

a) 

b)
Calm water 

Wave trough amidships 
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 When the wave crest is located near amidships, the situation changes dramatically 
(Figure 2.2).  The underwater part of the bow section is usually quite narrow, especially 
around the waterline. Even for a bulbous bow, it is still narrower than for the section with 
bow flare.  The reason for this is the consideration of resistance.  The faster the ship is, 
the narrower its underwater bow section must be.  If the wave crest is amidships and the 
wave has a length similar to a ship length, the wave trough is located around the bow 
section.  This makes the draft at the bow quite shallow.  As a result, the waterplane 
become becomes very narrow in this region. 

 

 
Figure 2.2 Changes in Hull Geometry when a Wave Crest is Amidships (a) 3D View (b) Waterplane 

 

 The underwater part of the aft section is also very narrow.  The main design 
consideration is to provide the propulsor with enough inflow for the speed and power of 
the ship.  Consideration of energy efficiency impels a designer towards a buttock flow 
stern design.  When the wave crest is located amidships, another wave trough is located 
near the aft section. The draft at the stern becomes shallow, which makes the waterplane 
very narrow in the aft part.  This also is exaggerated with increased ship speed, as more 
power must be handled by the propeller.  

 As mentioned previously, the midship section is typically more wall-sided, so it 
does not significantly affect the waterplane.  Figure 2.2b shows the effect of the wave 
crest amidships, where the overall waterplane is reduced in area. 

 As it is well known from ship hydrostatics, the waterplane area has a significant 
effect on ship stability.  If the waterplane area is reduced, then so is the GZ curve (see 
Figure 2.3). 

 

 
Figure 2.3 Stability Corresponding to Waterplane Changes on the Wave Trough (Top) and the Wave 

Crest (Bottom) 
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2.1.2 Development of Parametric Roll 
 

 The development of the occurrence of parametric roll is caused by periodic 
stability changes occurring with a certain frequency – about twice per roll period, see 
Figure 2.4. 

 

 
Figure 2.4 Development of Parametric Roll Resonance (Parametric Roll) 

 

 If the ship is rolled while on the wave trough, increased stability provides stronger 
pushback, or restoring moment. As the ship returns to the upright position, its roll rate is 
greater, since there was an additional pushback from the increased stability. If at that 
time, the ship has the wave crest at midship, the stability is decreased and the ship will 
roll further to the opposite side because of the greater speed of rolling and less resistance 
to heeling. Then, if the wave trough reaches the midship section when the ship reaches its 
maximum amplitude roll, stability increases again and the cycle starts again.  

 Note that there was one half of the roll cycle associated with the passing of an 
entire wave. So, there are two waves that pass during each roll period. That means the 
roll period is about twice that of the wave period (see Figure 2.5). 

 

Strong pushback, 
picking up 
rotation speed 

Stability is decreased, 
ship rolls further 

Stability is 
increased 
with strong 
pushback 

Stability is increased 
again, strong 
pushback cycle is 
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Figure 2.5 Development of Parametric Roll 

 

2.1.3 Frequency Characteristics of Parametric Roll 
 

 Parametric roll is a resonance phenomenon and similar to roll resonance in beam 
waves (Figure 2.6a), parametric roll has a limited frequency range (Figure 2.6b).  

 The principal difference between the two phenomena is that the span of the 
frequency range for parametric roll depends on the magnitude of stability change, while 
the frequency range for roll resonance depends on wave height (Figure 2.6c).  Also, if the 
beam waves are far from the resonance frequency, the ship only rolls with very small 
amplitude. Parametric roll does not exist (the amplitude is equal to zero) outside of the 
frequency range. 

 

 
Figure 2.6 (a) Roll Resonance in Beam Waves (b) Parametric Roll Resonance 

 (c) Frequency Range of Parametric Roll Resonance 
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2.1.4 Influence of Speed and Wave Direction 
 

 The frequency of encounter with waves changes when a ship is in motion.  When 
a ship is sailing in following or stern-quartering seas, the direction of waves and the ship 
heading are similar (Figure 2.7a).  As a result, the relative speed is small and a ship 
encounters fewer waves during the same time period (compared to a zero speed case). 
The encounter period is increased (and the encounter frequency is decreased) in 
following or stern-quartering waves. 

 When a ship is sailing in head or bow-quartering seas, the direction of waves and 
the ship heading are opposite (Figure 2.7b).  As a result, the relative speed is large and a 
ship encounters more waves during the same time (compared with the zero speed case). 
The encounter period is decreased (and the encounter frequency is increased) in head or 
bow-quartering waves. 

 

 
Figure 2.7 Influence of Speed and Wave Direction 

 

 The inception of parametric roll depends on the frequency of encounter being in 
the frequency range where the parametric roll is possible (Figure 2.6c).  Therefore, the 
development of parametric roll depends on speed and heading. 

 

a) Following and stern-quartering seas: the encounter period is longer that the wave period 

b) Head and bow-quartering seas: the encounter period is shorter that the wave period 
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2.2 Mathematical Description of Parametric Roll 

2.2.1 Derivation of Mathieu-Type Equation 
 

 The Mathieu equation is the simplest mathematical model of parametric roll and it 
has been extensively used to analyze this phenomenon.  As this model is instrumental in 
the development of vulnerability criteria, it makes sense to repeat its derivation and 
describe its properties.  It is done mostly following Shin, et al. (2004). 

 Consider a ship sailing in longitudinal seas (following or head), so there is no 
wave heeling moment: 

  0)(4444  tGMBAI x
  (2.1) 

Here, B44 is the linear (or linearized) damping coefficient, Δ is the weight displacement of 
a ship, Ix is the transverse moment of inertia, and A44 is the added mass in roll. 

 The variation of GM with time is the key physical feature to model for parametric 
roll.  As this variation experiences periodic changes once waves pass through, its 
dependence on time is simulated with sine or cosine function: 

)cos()( tGMGMtGM eam   (2.2) 

Here, e is the wave frequency of encounter while GMm is a mean value of the GM. GMa 
is the amplitude of the GM changes in waves 

 minmax5.0 GMGMGM a   (2.3) 

 minmax5.0 GMGMGM m   (2.4) 

Here, GMmax and GMmin are maximal and minimal instantaneous values of GM for a 
number of wave crest positions along the ship hull.  

 Using the cosine function to describe GM changes in time is just an 
approximation to express the periodic character of the changes during the wave pass.  
Figure 2.8 shows the calculated GM in waves compared to a cosine function 
approximation, as a function of the position of the wave crest along the length of the hull. 
As can be seen from this figure, the minimum of the calculated GM is shallower, while 
the maximum is sharper in comparison with the cosine approximation in (2.2). The 
calculated curve is also slightly shifted. 

 
Figure 2.8 GM Values in Waves vs. Cosine Approximation for a Post Panamax Containership 
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 Substitution of the definition of (2.2) into the roll equation (2.1) and its division 
by the inertial coefficient yields the following equation for roll motion: 

 

  0)cos(2 22  team
  (2.5) 
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In order to transform (2.5) into the standard form of the Mathieu equation, a 
dimensionless time (in terms of encounter period) is introduced:  

 

e
e tt




  (2.7) 

 

Substitution (2.7) into the roll equation (2.5) turns it into a dimensionless form: 
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Here, the coefficients of equation (2.8) are the dimensionless quantities: 
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 ;;  (2.9) 

 

The next substitution eliminates damping by introducing new variable x: 

 

  exp)()( x  (2.10) 

 

This finally expresses roll in the form of the Mathieu equation by substitution equation 
(2.10) into (2.8): 

 

  0)cos(
2

2




xqp
d

xd
 (2.11) 

 

Here: 

  222 ; am qp   (2.12) 
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2.2.2 Solution of the Mathieu Equation and Its Properties 
 

 The Mathieu equation is a linear differential equation with variable coefficients. It 
solution cannot be expressed in elementary functions.  Therefore, as the Mathieu equation 
is widely used in mathematics, physics, and engineering, its solution is considered to be a 
specialized function, known as the Mathieu function.  It is tabulated and included in 
advanced mathematical software packages. 

 As is known, the Mathieu equation (2.11) may have two types of solutions 
(Mathieu functions): bounded, or “stable,” (Figure 2.9) and unbounded, commonly 
referred as “unstable” (Figure 2.10).  

 Whether a solution is bounded or unbounded depends on the combination of 
coefficients, p and q. The combinations of p and q values that correspond to a bounded or 
unbounded solution can be graphed in a figure that is known as the Ince-Strutt diagram 
(shown in Figure 2.11). The blank areas correspond to the bounded solution, while the 
shaded areas correspond to the unbounded solution. 

 

 
Figure 2.9 Bounded Solution of the Mathieu Equation p=0.1; q=0.2 

 

 
Figure 2.10 Unbounded Solution of the Mathieu Equation p=0.15; q=0.2 

 

 The shaded areas, identified with Roman numerals in Figure 2.11, correspond to 
the unbounded solution and have shapes of curved triangles. Each such triangle touches 
the p-axis and, with an increase of q, becomes wider. The areas with the smaller p-
intercept grow in width faster; it can be seen at the level q = 2, the first shaded area is the 
widest. 

 The parameter p is seen, in equations (2.9) and (2.12), to be equal to a difference 
of the square of the ratio of natural and excitation frequencies and the square of the ratio 
of the damping and the excitation frequencies. 
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Figure 2.11 Ince-Strutt Diagram 

 

 The parameter q reflects the level of GM change in waves, expressed as the 
square of the frequency ratio, as can be seen in equations (2.3), (2.9) and (2.12). 
Therefore, the parameter q plays the role of the amplitude of parametric excitation. As a 
result, the entire Ince-Strutt diagram can be considered in terms of the amplitude of 
parametric excitation vs. the square of non-dimensional frequency. 

 The first instability zone intersects the axis exactly at p = 0.25, which corresponds 
to the frequency ratio of 2, so the excitation frequency is twice the natural roll frequency 
at this point. The unbounded motion belonging to this zone is commonly referred to as 
the principal parametric resonance.  The zoomed-in view of this zone is shown in the 
insert of Figure 2.11. 

 The second instability zone intersects the axis at p = 1.0, where the excitation 
frequency is equal to the natural roll frequency.  Unbounded solutions belonging to this 
zone are defined as the fundamental parametric resonance. 

2.2.3 Influence of Damping and Nonlinearity 

 The Mathieu equation (2.11) has a periodic bounded solution since the damping 
was excluded by the substitution (2.10).  This means that the corresponding roll, (), 
decays with the damping decrement, if x() is a periodical solution of the Mathieu 
equation, as shown Figure 2.9. 

 An unbounded solution of the Mathieu equation, x() (as in Figure 2.10), does not 
necessarily mean that rolling will be unbounded because the exponential term exp(-) 
might undo the effect of boundlessness by damping the solution back to a decaying form. 

 It also means that there is a threshold value for roll damping for each pair of 
Mathieu parameters, p and q. If roll damping is less than the threshold value, roll will be 
unbounded as the solution of the Mathieu equation.  If the roll damping is larger than the 
threshold, roll is still bounded, even if the Mathieu equation is unbounded.  The 
increment of the Mathieu solution is not enough to overcome the decrement of roll 
damping. In addition, it is also means that with linear damping, the instability zone is 
narrower and requires some finite value of GM variations even at p=1/4; i.e., it does not 
touch the axis (see Figure 2.12). 
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Figure 2.12 Influence of Damping on Parametric Roll 

 

 The Mathieu equation, however, is only capable of indicating parametric roll 
starts or not.  Once it starts, the amplitude grows exponentially and the solution goes into 
infinity.  In order make a model to stabilize with certain amplitude, the nonlinearity of 
stiffness (GZ curve) needs to be introduced.  The one of the simplest expressions is a 
cubic parabola: 

 

 21)(  GMGZ  (2.13) 

 

Such cubic parabola models a GZ curve with an angle of vanishing stability of 
1 rad ≈ 57.3 deg, an angle of maximum about 3-0.5 rad ≈33 deg, while the maximum of 
the GZ curve is about 0.385 GM.  This model, of course, cannot simulate all the regulated 
properties of the real GZ curve.  However, it still may be used as the first expansion to 
study parametric roll behavior of a ship-like oscillator.  

 The simplest model of changing GZ curve in waves can be expressed by 
combining (2.2) and (2.13), using the definitions in (2.6): 

 

   )cos(1),( 222 tGMtGZ eamm   (2.14) 

 

Figure 2.13 shows the modeled GZ curve as it changes during a one wave pass. 
Substitution of the model of the GZ curve (2.14) into the linear equation (2.5) makes it 
nonlinear and capable for stabilization in the mode of parametric roll: 

 

    01)cos(2 222  team
  (2.15) 

 

 Figure 2.14 shows the difference between nonlinear roll response with 
stabilization of roll amplitude just below 30 degrees compared to linear roll response 
(solution of equation (2.5)) with unbounded growth of amplitude. 
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Figure 2.13 Periodically Changed Cubic GZ Curve 

 

 
Figure 2.14 Modeling of Parametric Roll with Mathieu Equation (Blue) and Nonlinear Equation 

(Red) 

 

 It can be noted from Figure 2.14, that in the beginning, both linear and nonlinear 
roll response are identical (this is natural, as the GM formula works well for small 
angles). However, once the amplitude exceeds 10-15 degrees, the difference between the 
linear and nonlinear roll response becomes apparent.  This is also clear from Figure 2.13, 
as the difference between the GZ curve and its initial tangent becomes noticeable starting 
about 10-15 degrees. 

 The difference between the actual GZ curve and its tangent (expressed through 
GM) is a key to explaining the stabilization of parametric roll.  The roll amplitudes keep 
increasing, while energy is supplied by parametric excitation. A periodic change of 
parameters is a parametric excitation.  It can cause parametric resonance if it meets the 
frequency conditions.  If the oscillator is linear, its natural frequency does not change and 
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the energy continues to be incorporated.  For a ship, the instantaneous GM changes with 
roll angle, so the instantaneous natural frequency also changes.  This means that sooner 
or later the frequency condition of parametric roll will not be satisfied and the supply of 
energy from parametric roll will stop.  Once the amount of energy from parametric 
excitation is limited, the oscillator reaches a certain balance and parametric roll is 
stabilized with certain roll amplitude. 

 There are other important consequences of the nonlinearity of the GZ curve.  
Since the instantaneous GM changes, parametric roll may become possible for the 
frequencies where it is not considered possible, if judged only using the initial GM.  This 
requires, however, fairly large amplitude rolling, or very significant nonlinearity in the 
initial part of the GZ curve. 

 

2.3 Level 1 Vulnerability Criteria 
 In order to give rise to parametric roll, the parametric excitation (change of 
stability in waves) must satisfy two conditions: its frequency (the encounter frequency) 
must be within the range and its magnitude must be above the threshold (resulting from 
damping).  The Mathieu equation (and Ince-Strutt diagram) is the simplest mathematical 
model that can be used to check if these conditions are satisfied. ABS Susceptibility 
Criteria are based on this approach (ABS 2004, Shin et al, 2004).   

 K. Spyrou proposed a more advanced and practical version of the criteria based 
on the Mathieu equation (Spyrou, 2005).  This idea was further used as a background for 
SLF 53/3/7 and is explained further below. 

 

2.3.1 Frequency Condition 
 

 Boundaries of the 1st instability zone of at Ince-Strutt diagram have a known 
approximation: 

 

24

1
2,1

q
p BB   (2.16) 

 

Here p and q are parameters of the Mathieu equation (2.11) given by formula (2.12).  

The encounter frequency is related with speed and heading as: 
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V
ge  (2.17) 

 

Here V is the forward speed in m/s,  is heading angle relative waves (0 is following 
waves), g is acceleration of gravity, and  is true frequency of a wave. 
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 Assuming q = 1 (this is a conservative assumption as most container ships have 
q = 0.25~0.4). Spyrou (2005) formulated the criterion in terms of speed range (in knots): 
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Here L is length of a ship, and T is the natural period of roll.  

 This criterion was used in SLF 53/3/7 as a preliminary condition.  If the service 
speed of a ship does not fall into the range defined by equations (2.18), it is not 
susceptible to parametric roll and a further vulnerability check is unnecessary.  This 
preliminary condition makes the criteria easier to use, as the calculation of stability in 
waves is not required if the ship speed is outside of the range (2.18).  

 

2.3.2 Magnitude of Stability Change 
 

 The second condition requires the results of the calculation of the stability in 
waves, as it is based on the magnitude of parametric excitation.  The idea is to see how 
much the roll motions could grow, after a certain number of “dangerous” waves are 
encountered.   

 Consider the roll equation (2.5), re-writing it as: 
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Here h is another form of non-dimensional magnitude of parametric excitation: 
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 As  was mentioned earlier, the equation (2.19) does not have a solution that can 
be exactly expressed as an elementary function. Spyrou (2005) used the approximate 
solution according to Hayashi (1985): 
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Here C1 and C2 are arbitrary constants determined through initial conditions, and  is a 
parameter controlling the growth or decay of oscillations.  It is expressed as: 
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Here a is another variable expressing frequency ratio: 
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Obviously a = 1 when e = 2 m, and this is exactly the middle of the first instability 
zone of the Ince-Strutt diagram (the occurrence of principal parametric resonance). 

 The phase ε is determined from the following expression: 
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 For the sake of being conservative, the encounter frequency of a “dangerous” 
wave is considered to correspond exactly to the principal parametric resonance: 
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Assuming zero for the initial roll rate and the cosine function for parametric excitation, 
the arbitrary constants were found equal to 
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 Substitution of (2.25) and (2.26) into (2.21) yields: 
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 This formula allows for the calculation of the amplification factor, f, after n 
oscillations (note that in the considered case, the response has a frequency, m, and there 
were 2n “dangerous” waves): 
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 Note that after one or two cycles of oscillation, the term with the negative 
exponent in the equation (2.27) will become small, compared to the exponentially 
growing term, and could be neglected. Then the substitution (2.27) into (2.28) yields: 
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 Expressing h from equation (2.29) leads to 
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 Given a factor of amplification and a number of oscillations, the following 
criterion is deduced: 
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 Substitution of the constants and moving the damping to the left hand side of the 
inequality produces the criterion in its final form (Spyrou 2005): 
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 Formula (2.6) allows rewriting the criterion in (2.31) in terms of GM in waves: 
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 If stability changes in waves can be assumed symmetric, the calm water values for 
GM and roll frequency can be used instead of the mean values in waves: 
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 To complete this consideration, the parameters in (2.34) have to be chosen. If no 
other data is available, ABS (2004) recommends, as a conservative estimate: 



 

 24
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 The number of cycles and the factor of amplification are obviously related. A 
larger amplification of initial roll may be expected for more cycles. These parameters are 
very important for the tuning of the criterion and need to be addressed during the later 
stage of development. As a preliminary guess, f = 5 while n = 4 leads to: 
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 This is very close to the standard proposed in Annex 2 of SLF 53/INF.10 – the 
value of 0.51 was used there for a standard, while the general form of a criterion is 
similar to (2.36).  

 

2.3.3 Parameters of the Wave 
 

 To carry out the calculation of stability in waves, the parameters of the wave need 
to be assigned.  Assuming the wave length is equal to the ship’s length seems to be 
logical, as this maximizes the stability changes.  ABS susceptibility criteria are based on 
this assumption. The height of the wave is defined by a table depending on length (ABS, 
2004). 

 K. Spyrou proposed to relate the wave height with wave length by using the 
principle of equal probability in order to establish a fair basis for the safety assessment of 
ships of all sizes.  This entails a steepness decrease for a longer ship, thus taking care of 
the fact that a high value of wave steepness is less probable to occur for long waves. It is 
noteworthy that a similar approach to steepness was implicitly used in the formulation of 
the weather criterion.  

 Parametric roll is excited by a consecutive action of a series of waves. Therefore, 
it is logical to evaluate probability for the encounter of a group rather than for a single 
wave.  This can be done using wave group representations described in Themelis and 
Spyrou, (2007; 2008) and Themelis (2008). 

 Sequential wave heights are presented with a Markov chain.  This means that the 
wave height is assumed to be dependent only on the height of the previous wave, but is 
independent of the waves prior to the previous wave.  This assumption seems to be quite 
logical, since the wave envelope (a curve that contains all the heights) has an 
autocorrelation function with relatively fast decay; so the correlation is practically zero 
after two wave periods.  

 Because a joint distribution of wave heights and wave lengths is known, this 
approach allows for the calculation of the probability of encountering a number of waves 
of a given length (actually the length within a given range) and height. K. Spyrou 
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calculated how the steepness depends on wave length, keeping the probability of 
encounter of a group of four waves constant (P = 6.3 x 10-6).  The calculations were 
carried out for a significant wave height of 5 m and modal period of 12 s.  There were 
two series of calculations using different ranges for wave length.  The results of the 
calculations are shown in Figure 2.15. 

 This analysis, although preliminary, still allows capturing of the dependence of 
steepness on length, and avoiding penalizing large ships. 

 Based on these calculations, a sample formula for wave height is proposed: 

 

 
















30001667.0

3001000005.02.0
3

10005.0

LL

LifL
L

LifL

H  (2.37) 

 

 Results of the application of these criteria to the population of the sample ships 
are shown in Table 1. Further details of the sample ships are given in Section 7. 

 
Table 1 Sample Results for Vulnerability Criteria Level 1 Based on Parametric Excitation 

Equation (2.18): 
boundaries for 
dangerous speeds Ship 

GM Vs, kts Vs1 Vs2 

Stability 
variatio
n check 
needed? 

Stability 
variation 
equation 
(2.34) 

Vulner-
ability 
detected? 

Fishing Vessel 2 0.73 15.00 1.74 -5.24 Yes 0.09 No 
Fishing Vessel 1 (ITTC A2) 1.70 18.00 -6.08 -20.98 Yes 0.16 No 
General Cargo 1(S60) 0.27 18.00 14.40 5.29 Yes 1.03 Yes 
RoPax 1.79 18.00 -2.65 -25.41 Yes 0.82 Yes 
Bulk Carrier 2  0.56 15.00 12.96 1.02 Yes 0.40 No 
Naval Combatant 2 
(ONRTH) 3.03 30.00 -17.99 -52.94 Yes 0.26 No 
Naval Combatant 1 
(ONRFL) 1.04 30.00 1.73 -18.79 Yes 0.58 Yes 
General Cargo 2 (C4) 0.90 16.00 7.85 -8.99 Yes 0.57 Yes 
Containership 5 (C11) 2.00 25.00 7.45 -15.89 Yes 0.77 Yes 
LNG Carrier 3.42 18.00 -1.16 -31.11 Yes 0.18 No 
Bulk Carrier 3.46 15.00 2.90 -24.48 Yes 0.09 No 
Passenger Ship 3.75 25.00 -16.75 -58.59 Yes 0.57 Yes 
Containership 4 1.15 25.00 8.43 -15.33 Yes 0.75 Yes 
Tanker 9.95 14.00 -16.36 -60.16 No 0.03 No 
Containership 1 1.27 25.00 16.22 -3.85 Yes 1.42 Yes 
Containership 3 1.85 25.00 10.31 -14.45 Yes 0.58 Yes 
Containership 2 1.79 25.00 17.05 -4.95 Yes 0.90 Yes 

 

 The check on dangerous ship speeds shows the need for the stability variation 
check for all the sample vessels, except for the tanker. The stability variation check 
indicates possible vulnerability for all containerships, RoPax, Naval Combatant 1, 
passenger ship and the general cargo ship 1.  These results are less conservative 
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compared with the geometry-based criterion (Peters, et al., 2010), which is expected, as 
these criteria are more complex. 

 

 
Figure 2.15 Dependence of Wave Steepness on Length, Based on Equal Probability of Encountering a 

Group of Four Waves 

 

2.4 Level 2 Vulnerability Criteria 

2.4.1 Mathematical Model of Wave Environment 
 Excessive conservatism may be a problem for the second level of the vulnerability 
criteria; it may incur unnecessary cost, because a ship not susceptible to parametric roll 
will be subjected to expensive direct analysis procedures.  In order to avoid excessive 
conservatism, without compromising safety, mathematical models of higher fidelity are 
used for the second level vulnerability check.  

 Therefore, consideration of the vulnerability of a ship to parametric roll in 
irregular waves is preferable, not only because it is consistent with the probabilistic 
approach discussed above, but also because the use of regular waves may be too 
conservative.  Regular waves are essentially a wave group of infinite length; therefore, 
the time to develop large amplitude is also infinite (SLF 48/4/12). In a real seaway, 
parametric roll development is the response to a particular wave group, of finite duration, 
which contains waves capable of generating parametric resonance.  Not all wave groups 
possess such characteristics, and this is the reason why parametric roll can start and stop.  

 The fidelity of the mathematical model used for the second level vulnerability 
criteria can be improved by considering the response to a group of large waves with some 
“typical” characteristics.  The length of this wave group can be found from the sea state 
conditions (Themelis and Spyrou, 2007; 2008, Themelis 2008).  However, at this stage of 
study, it is suggested to keep this as a tunable parameter.  Further work to justify its 
choice will be discussed in a future study.  At this stage, the length of a wave group is 
proposed to be 5~9 waves.  The numerical example discussed below used 7 waves. 

 The “typical” wave group, shown in Figure 2.16, is assumed to consist of a 
number of waves of the same length and period which corresponds to the spectral mean 
period. Justification of this assumption is considered later, in the next subsection: 
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 ttAt 1cos)()(   (2.38) 

where 1 is the mean frequency, A(t) is an amplitude of the group; it is defined with a 
sine function envelope: 

 

    5.0sin5.0)( minmaxmin tAAAtA A  (2.39) 

 

Amin and Amax are the minimum and maximum amplitude of the group, respectively. A is 
an envelope frequency defined as: 
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TG is a time interval for a group to pass a fixed point, and depends on number of waves in 
a group and the mean period: 

 

1TNT GG   (2.41) 

 

where NG is assumed number of waves in a group. The amplitude of the group is 
considered as a function of time only; its spatial change is not modeled.  

 For simplicity, consideration of the wave direction is limited to only head or 
following seas. This is expected to be appropriate, as parametric roll will likely be most 
severe in these conditions. Encounter frequency is expressed as: 

 

Sdire Vkk 11   (2.42) 

 

where VS is forward speed, k1 is the wave number corresponding to the mean period, T1, 
and kdir is a wave direction coefficient; it equals 1 for head seas and -1 for following seas.  

 

 
Figure 2.16 Time history of a wave group passing fixed point in space, Sea State 7 
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 The time while the group passes a point at the midship section is expressed as: 
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where 1 is the wave length corresponding to the mean period, and c is the wave celerity. 
The relation between period, length, and wave celerity is: 
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The deep-water dispersion relation is used to relate the mean frequency to the wave 
length (through the wave number): 
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The duration of time that the wave group passes the midship section affects the formula 
for the amplitude envelope: 
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This leads to a re-formulation of the wave group description in terms of the frequency of 
encounter: 
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2.4.2 Parameters of a Wave Group 
 

 All the waves in the group are assumed to have the same frequency which equal 
to the mean frequency of the spectrum.  The justification of this assumption comes from 
the envelope theory, which was used by Longuett-Higgins to derive the joint distribution 
of wave heights and periods.  The theory of envelope was originally developed by Rice 
(1944; 1945) and considered a stochastic process (in this case, wave elevations) in the 
form: 
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Here one stochastic process is presented as a function of two other stochastic processes: 
the wave elevation envelope A(t) and the phase (t).  If the spectrum of process, (t), is 
narrow banded (or at least has an articulated peak), the processes of the envelope and the 
phase are slowly changing in comparison with process (t). The process is conveniently 
presented as: 

 

 )()(cos)()( ttttAt    (2.49) 

 

The derivative of the phase is related to frequency:  

 

|)(|)( tt   (2.50) 

 

The frequency is a positive value, by the definition. The phase shift process, (t), is 
“responsible” for the “randomness” of the process (t). In particular, this helps to keep its 
autocorrelation function of the presentation (3.50) equal to the autocorrelation of the 
original process (Autocorrelation function of a stochastic process is a measure of its 
“memory”; it shows the correlation of the value at present instant of time with the value 
in the past). 

 The autocorrelation function of waves does not have to be modeled for 
vulnerability criteria (it makes the mathematical model too complex). Therefore, the term 
(t) can be neglected: 
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 One of the results of the envelope theory (Rice 1944; 1945) is the joint 
distribution of the envelope and the derivatives of the phases: 
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Here  is the standard deviation of wave elevations, 1 is the mean frequency, and 2 is 
the average width of a spectrum: 
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For the envelope presentation, the amplitude follows the Rayleigh distribution, and the 
conditional probability density function (PDF) can be expressed as: 
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 The mean value and the variance are expressed as: 
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Then, it becomes not difficult to see that the conditional distribution of the derivative of 
phase is, in fact, normal. Taking into account (2.50), the PDF for frequency can be 
expressed as: 
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 Figure 2.17 shows this PDF computed for three different amplitudes. The mean 
value and variance of the frequency can be computed using this PDF: 
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Figure 2.17 Conditional Distribution of Frequency for Three Different Amplitudes 
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 The dependence of conditional mean value and variance on amplitude is shown in 
Figure 2.18. 

 

 
Figure 2.18 Conditional Mean Value and Amplitude of Frequency as a Function of Amplitude 

 

 Figure 2.18 shows that, with increase of the amplitude, the mean value of the 
frequency quickly approaches the spectral mean frequency, , while variance is reduced 
dramatically.  This means that once to the wave becomes larger, their frequency is very 
likely to be close to the mean frequency, with little deviation.  As the wave group is 
meant to consist of large waves, this justifies the choice of the frequency for the wave 
group. 

 Three more parameters remain to be defined: the number of waves in a group, and 
the initial and maximum amplitudes. A robust choice of these parameters can be made 
based on wave statistics, either measured or simulated. For the purposes of testing the 
proposed criteria, the following values of these parameters were chosen: 

 

minmaxmin 5.1;5.0;7 AAHAN SG   (2.59) 

 

Here HS is significant wave height. 

 

2.4.3 Roll Response of a Group 
 

 As was mentioned previously, the level two vulnerability criteria should be based 
on a higher fidelity mathematical model, in order to prevent excessive conservatism.  
Consideration of irregular waves was one step towards this objective.  Another step is to 
better account for the instantaneous attitude of a ship on the wave, while computing 
stability in waves.  As it was demonstrated in Shin, et al, (2004), neglecting heave and 
pitch increases the magnitude of instantaneous stability variations in waves. 

 The attitude of a ship is calculated based on the heave and pitch response to a 
wave group: 
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where M is mass of the ship, IY is mass moment of inertia relative to the transversal axes, 
A33 and A55 are heave added mass and pitch moment of inertia (assumed to be equal to the 
corresponding mass and moment of inertia), respectively; and B33 and B55 are damping 
coefficients for heave and pitch. Functions F and M are the difference between Froude-
Krylov and hydrostatic forces and moments, respectively, at the instant of time, t. These 
values are expressed as follows: 
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where  is mass density of water, V0 volumetric displacement in calm water, LCB0 is the 
longitudinal position of center of buoyancy in calm water. Functions  and M calculate 
an area and a static moment relative to the y-axis of a station located at a longitudinal 
position along the hull, x. The second argument of this function shows the submergence 
of this position along the hull, as expressed by the function of instantaneous waterline 
z(G,,t), see Figure 2.19 

 

 
Figure 2.19 Sample Instantaneous Waterlines Evaluated from Heave and Pitch Response on a Group 

 

 Once the Froude-Krylov terms are defined, a system of differential equations 
(2.60) can be integrated with a standard Runge-Kutta solver. Initial conditions are chosen 
in order to avoid unrealistically large initial transients.  To find such initial conditions, let 
the system (2.60) begin with regular waves of the same frequency, but with the initial 
group amplitude.  Steady state conditions for heave and pitch, corresponding to the initial 
phase of the group, can be used to calculate the heave and pitch response on the group 
(see Figure 2.20). 

 Each point of the time histories of heave and pitch, shown in Figure 2.20, 
correspond to a waterline, three of which are shown in Figure 2.21.  These waterlines 
allow for the evaluation of the GM response to the wave group (shown in Figure 2.22). 

z(G,,t) 
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 Nonlinearity of the instantaneous GZ curve is one additional factor that may be 
taken into account, in order to avoid excessive conservatism by improving fidelity of the 
mathematical model.  However, before using a fully nonlinear model, it makes sense to 
evaluate the roll response using a linear model.  This will also help to see if the frequency 
conditions are chosen correctly.  Also comparing the linear and nonlinear response 
enables examination of the influence of nonlinearity. 

 

 
Figure 2.20 Heave and Pitch Response on a Group 

 

 
Figure 2.21 Sample Waterlines Evaluated from Pitch and Heave Time History 

 

 
Figure 2.22 GM Response on “Typical” Wave Group, with the GM Value in Calm Water Shown in 

Blue 
 

 The GM response to a “typical” wave group first should be approximated using a 
cosine function with time-dependent amplitude (see Figure 2.23): 
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where e is the encounter frequency, 

 

Se Vk11   (2.64) 

 

and where 1 and k1 are the wave frequency and wave number corresponding to the mean 
spectral period.  VS is ship forward speed, which is chosen to satisfy the frequency 
condition for principal parametric resonance, while keeping the value within the 
achievable range for the given vessel, in the considered sea state.  

 

 
Figure 2.23 Approximation of GM Response on “Typical” Wave Group with Cosine Function 

 

 Roll response is evaluated by the numerical solution of the roll equation with 
stiffness (2.63) and assumed roll damping. The initial conditions for the numerical 
solution of roll motion can be chosen as 5-10 degrees for the initial roll angle and zero 
roll rate. 
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 Equation (2.65) is essentially the Mathieu equation (see Equation (2.11)). If the 
amplification of roll oscillations is observed, then parametric excitation is large enough, 
taking into account speed limitations. The largest absolute value of the roll angle 
observed during the wave group pass can be used as a criterion: 

 

LffforCrL  |)max(|  (2.66) 

 

0 10 20 30 40 50 60 70 80 0 

1 

2 

3 

4 

5 

6 

GM in calm water

GM, m 

time, s 



 

 35

 The next step is taking into account the nonlinearity of the GZ curve. Due to 
significant nonlinearity of the GZ curve, the development of parametric resonance may 
be reversed, as the change in instantaneous GM with roll angle may take the system out 
of the Mathieu instability region (Spyrou 2004).  

 To model this nonlinearity, the GZ curve in waves can be evaluated directly using 
instantaneous draft and trim available from pitch and heave calculations.  There are 
several software packages available for this type of calculations.  Alternatively the 
following approximation may be used in lieu of the actual instantaneous GZ curve (other 
approximations can be formulated too): 
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Here the index “0” refers to calm water conditions.  Equation (2.67) can be used in the 
roll equation with nonlinear stiffness: 
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 Equation (2.69) is a variation of Hill’s equation. However, it may be necessary to 
extend (2.68) up to 180 degrees, to avoid numerical issues while solving equation (2.69), 
see Figure 2.24.  

 
Figure 2.24  GZ Curve Modeled for Response to a “Typical” Wave Group 

 

Based on the solution of (2.69) shown in Figure 2.25, a second criterion, CrN, is 
formulated 

 

NffforCrN  |)max(|  (2.70) 
 

Due to the nonlinearity of the time-dependent stiffness, it is not known in advance 
what encounter frequency range may lead to parametric resonance.  This implies that 
calculation has to be repeated for several speeds. 
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Figure 2.25 Nonlinear Roll Response to a “Typical” Wave Group 

 

 

2.4.4 Results of Sample Calculations 

 

 Results are shown for the two criteria (CrL and CrN) for the sample ships (see 
Figure 2.26). The values used for the evaluation for each ship are given in Table 2. For 
the ships considered, a common damping ratio was chosen, typical for these types of 
ships. For the two naval combatants, which typically have larger bilge keels, a larger 
damping ratio was specified. The GM condition used was a typical operational loading 
condition for each of the sample ships, GMOP. Sea States 5-8 were evaluated, but only the 
lowest sea state where parametric roll was observed and the given speed condition to 
satisfy the frequency ratio conditions are presented. 

 Modern containerships, particularly the C11-class containership, are known for 
their vulnerability to parametric roll (e.g. France, et al., 2003). The proposed criteria 
shows large roll angles for all five containerships, as well as the notional RoPax vessel 
and the passenger ship, encountering representative wave groups in Sea States 6, 7, and 8. 
As expected, Series 60, which is representative of a conventional ship type, the tanker, 
and bulk carriers did not show any vulnerability for the considered loading and 
operational conditions. 

 Both ONR Topside configurations (flared and tumblehome) have relatively large 
bilge keels. The damping ratio used was meant to model the fully appended hulls. While 
the ONR Tumblehome Topside did not show any parametric roll for the analyzed loading 
condition, parametric roll was predicted for ONR Flared Topside, using the linear 
formulation. However, parametric roll was not observed from earlier experimental and 
numerical investigations (based on nonlinear formulations) for these hull forms with 
bilge keels (e.g. Bassler, 2008; Olivieri, et al., 2008; Hashimoto & Matsuda, 2009), 
including for the flared topside configuration with roll damping coefficients 
corresponding to the fully appended hull. Furthermore, when the instantaneous GZ curve 
is used instead of the approximation, parametric roll was not indicated, which 
corresponded to previous findings.  

 The indication of parametric roll is consistent with the earlier findings of Peters, 
et al. (2010) for a smaller population of sample ships.  However, the linear criterion also 
provides large values for the two fishing vessels, in addition to Naval Combatant 1.  The 
case with two fishing vessels deserves more attention, as these ships were found not to be 
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susceptible to parametric roll by the level 1 vulnerability criteria based on magnitude of 
stability variations (see Table 1). 

 The reason for this inconsistency becomes clear when plotting GM response from 
the wave group. Figure 2.27 shows GM response on the “typical” wave group for a 
fishing vessel calculated for Sea State 6.  As can be seen from this figure, the 
approximation is not applicable, and as a result the linear criterion (2.66) cannot be used.  
At the same time, the nonlinear criterion (2.70) yields results that are consistent with the 
level 1 criteria, based on magnitude of stability changes. 

 The reason for this inconsistency is use of the linear approximation beyond the 
applicability of a linear model.  The level 1 criterion uses a wave with the same length 
that the ship length, while the wave height is calculated from a prescribed steepness.  For 
the Fishing Vessel 2, this means that the wave length was 22 m, while the wave height 
was about 1.1 m.  A linear model may be valid in these conditions.  The level 2 criterion 
used a “typical” group for Sea State 6. The wave length was 143 m, and the wave height 
varied from 5 to 7.5 m.  Figure 2.27 demonstrates that the linear approximation is clearly 
not appropriate of a stretch for these conditions. 

 The nonlinear model nevertheless yielded reasonable results, stating the absence 
of parametric roll in these conditions.  To verify this conclusion, Large Amplitude 
Motion Program (LAMP) simulations were carried out for a regular wave of 143 m long, 
with wave height of 5 m.  The Fishing Vessel 1 was made to sail in head seas with a 
forward speed of 10 knots.  The initial roll angle was 10 degrees.  The results are shown 
in Figure 2.28.  As it could be expected, after a short initial transient, the ship is simply 
countering the waves and roll motions are simply decaying. 

 The nonlinear criterion, given in (2.70), provides correct evaluation of the 
outcome: no parametric roll. 

 Another case which requires more detailed consideration is for Naval 
Combatant 1. The linear criterion indicated parametric roll.  In this case, the linear result 
is consistent between the levels 1 and 2.  However, this ship is not known for parametric 
roll, and LAMP simulations did not indicate parametric roll (see Figure 2.29). 

 These simulations were carried out for conditions where the largest wave (height 
7.5 m) in a “typical” wave group corresponded to Sea State 6 (length 143 m, wave height 
from 5 to 7.5 m).  As can be clearly seen from Figure 2.29, pitch and heave motions are 
not small, while the roll motions decays.  At the same time, the application of the GZ 
curve approximation (2.67), based on the GM response to a “typical” wave group, leads 
to parametric roll (see Figure 2.30).  Use of the actual instantaneous GZ curve in waves 
(calculated for conditions where the largest wave in the group had a height of 7.5 m) 
showed correctly no parametric roll (see Figure 2.31).  

 This example demonstrates that use of the actual GZ curve in waves is preferable, 
as the approximation (2.67) seems to be too conservative. 

 In conclusion, the nonlinear criterion provides a clearer separation between the 
sample ships with increased vulnerability and those which are not known to be vulnerable 
(Figure 2.32). 
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Figure 2.26 Calculation Results for the Two Level 2 Vulnerability Criteria for Parametric Roll for 

the Sample Ships, Linear and Nonlinear Criteria 

 

Table 2 Calculation Results for the Two Level 2 Vulnerability Criteria for Parametric Roll for the 
Sample Ships 

Type SS 
GMOP 

(m) Roll Damping Speed (kts) CrL CrN 
Containership 1 7 1.118 0.05 10 25 25 
Containership 3 8 1.644 0.05 1 25 25 
Passenger Ship 7 3.695 0.05 20 25 25 
Containership 5 (C11) 7 1.905 0.05 0.01008 25 25 
Containership 2 7 1.84 0.05 2 25 25 
RoPax 6 1.773 0.05 25 25 25 
Containership 4 7 1.064 0.05 10 25 25 
General Cargo 2 (C4) 6 1.099 0.05 5.144 10.16 14.9 
Fishing Vessel 1 (ITTC A2) 6 1.69 0.05 10 25 10 
Naval Combatant 1 (ONR FL) 6 1.028 0.15 15 25 10 
Fishing Vessel 2 6 0.7271 0.05 10 25 10 
Bulk Carrier 7 9.405 0.05 10 10 10 
General Cargo 1 6 0.2449 0.05 9.261 10 10 
Naval Combatant 2 (ONR TH) 6 3.013 0.15 25 10 10 
Tanker 7 9.763 0.05 10 10 10 
Bulk Carrier 2 6 0.5293 0.05 6.904 10 10 
LNG Carrier 6 3.398 0.05 1.799 10 10 
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Figure 2.27 Approximation of GM Response on “Typical” Wave Group for Fishing Vessel 2, in Sea 

State 6. 

 

 
Figure 2.28 Results of LAMP Simulation of Fishing Vessel 1 

 

 The level 2 criteria were independently implemented in Germany (Annex 9 of 
SLF 53/INF.10) and in Sweden (SLF 53/INF.8 and Annex 10 SLF 53/INF.10). 
Calculations presented in Annex 9 (SLF 53/INF.10) were performed for 26 ships 
including container carriers, bulk carriers, cruise vessels, tankers, multi-purpose vessels 
(MPVs) and tugs.  The consistency between the level 1 (geometry–based formulation) 
and level 2 was analyzed.  An inconsistency was detected in the case of the MPVs, as the 
level 1 criteria did not indicate vulnerability, while the level 2 did.  However, based on 
the available information, a suggested hypothesis for this difference is not currently 
possible and additional analysis needs to be performed.   
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Figure 2.29 Results of LAMP Simulation for Naval Combatant 1 

 

 
Figure 2.30 Roll Response to a Typical Wave Group– Approximate GZ 

 
Figure 2.31 Roll Response to the Largest Wave in the Group– Actual Instantaneous GZ Curve in 

Waves 

 

 Documents SLF 53/INF.8 and Annex 10 of SLF 53/INF.10 reported calculations 
made for 25 ships including container carriers, bulk carriers, tankers, Ro-Ro ships and 
military.  Comparisons were also performed with the ABS severity criteria. No 
inconsistency has been reported. However, it was noted that the modulation of wave 
amplitude in a group does not change the conclusion on vulnerability. 
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Figure 2.32 Calculation Results for the Two Level 2 Vulnerability Criteria for Parametric Roll for 

the Sample Ships, Using the Nonlinear Criterion 

2.5 Summary 
 

 This section describes the development of vulnerability criteria for parametric 
roll.  The subsection 2.1 provides some general background information on the physics of 
the parametric roll phenomenon.  It is shown how parametric roll develops and how it is 
related to stability variations in waves. The influence of speed and wave direction is also 
considered. 

 Subsection 2.2 describes the basic mathematical model used for detecting 
susceptibility to parametric roll. It is a linear differential equation with a periodic 
coefficient, also known as the Mathieu equation.  This equation may have a growing 
solution, corresponding to the inception of parametric roll.  The influence of damping 
leads to the appearance of a threshold for parametric excitation (stability variation in 
waves); below this threshold, parametric roll is impossible.  The nonlinearity of the GZ 
curve leads to stabilization of parametric roll at a certain amplitude.  

 Subsection 2.3 describes level 1 vulnerability criteria. The proposal criteria 
consider two different conditions. The first condition examines if a ship is capable of 
achieving speeds that provide dangerous frequencies of encounter, while the second 
condition examines if the magnitude of stability change may result in a given increase in 
roll angle during a certain number of cycles.  

 Subsection 2.4 describes level 2 vulnerability criteria. The mathematical model 
used is more sophisticated, in order to avoid possible excessive conservatism.  The 
method accounts for irregular waves, by limiting the number of waves (a typical wave 
group with properties of a sea state), the influence of heave and pitch (through attitude of 
the wave), and the nonlinearity of the GZ curve. 

 Sample calculations were performed using 17 ships. 
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3 Vulnerability Criteria to Pure Loss of Stability 
 

This section describes the development of vulnerability criteria for pure loss of 
stability, including the physical background for this mode of stability failure, a review of 
the basics of probability theory used for further development of vulnerability criteria, and 
a derivation of this joint distribution, based on envelope theory.  A proposal for level 1 
vulnerability criterion is considered, based on the geometric characteristics of the hull, 
and two level 2 vulnerability criteria are also presented and tested.  Sample calculations 
were performed using 17 ships. 
 

3.1 Physical Background 
 

 Change of stability in waves, as examined in subsection 2.1.1, is also the physical 
basis for another mode of stability failure: pure loss of stability.  The dynamics of pure 
loss of stability are different from parametric roll, but are also closely related to the 
severity and duration of waterplane changes.  A possible scenario for the development of 
a stability failure caused by pure loss of stability is shown in Figure 3.1. 

 
Figure 3.1 Possible Scenario for the Development of Pure Loss of Stability 
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wave is approaching from the stern 
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 A large wave is approaching from the stern, while the ship is sailing with 
relatively high speed in following seas.  If the celerity (speed) of the large wave is just 
slightly above the ship speed, the time duration for the large wave to pass the ship may be 
long.  Once the crest of the large wave is near the midship section of the ship, its stability 
may be significantly decreased.  Because the wave celerity is just slightly more than ship 
speed, the condition of decreased stability may exist long enough for the ship to develop 
a large heel angle, or even capsize. Once the large wave has passed the ship, its stability 
is regained and the ship will eventually return to the upright position, if she did not 
already heel too far. 

3.2 Mathematical Tools for Development of Criteria 

3.2.1 Role of Probability 
 

 There are two factors determining the risk of stability failure caused by pure loss 
of stability.  The first one is how large the stability changes on the wave.  If stability 
changes are small because the hull is wall-sided (a pontoon barge is an extreme example), 
then this mode of stability failure is impossible.   

 The second factor is the likelihood of encountering a large and steep wave, which 
can cause a decrease of stability for a sufficiently long time so a large heel will develop.  
There are several contributors to this likelihood: 

 Length of the ship; for a large ship, a longer wave is needed to cause significant 
changes of stability.  The likelihood of encounter of the ship with a large and 
steep wave is low.  

 Length of the ship also has an influence on the time of exposure, as the longer 
waves are faster (e.g., a wave with a length of 250 meters has a celerity of 38 
knots in deep water). 

 Speed of the ship; this has an influence on the time of exposure.  Large waves are 
usually faster than typical ship speed.  However, faster ships may potentially have 
longer durations of exposure. 

 Spectral characteristics of the wave environment can increase or decrease the 
likelihood of encountering long and steep waves. 

 

 A brief review of these contributors makes it clear that the stability failure caused 
by pure loss of stability has a probabilistic nature.  An attempt to develop criteria based 
on deterministic background, say wave length equal to ship length, may lead to excessive 
penalizing of large vessels and introduce excessive conservatism (Annex 5 SLF 
52/INF.2), which is not desirable. 

 Also, fundamentally, pure loss of stability is a single-wave event; once the large 
wave has passed by the ship, its stability is regained.  Therefore, the risk of pure loss of 
stability for a particular ship can be completely determined by the probability of 
encountering a large wave, which causes enough exposure time to permit a failure.  
Therefore, mathematical tools to evaluate the probability of a large wave are needed. 
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These tools should also be capable of determining the probabilistic characteristics of the 
related exposure time. 

 Wave elevation is a three-dimensional stochastic process.  It changes in time at a 
given point.  It changes in two spatial dimensions, for a given instant of time.  So there 
are one temporal and two spatial dimensions to consider.  This three-dimensional 
stochastic process is a source of information for finding the probability of encountering a 
wave of certain characteristics.  While this may sound complicated, this problem is 
considered to be solved with reasonable accuracy required for engineering practice 
(Longuett-Higgins, 1957; 1976; 1984) 

 Prior to the use of these tools, a brief review of the basic probabilistic concepts 
used for these models may be useful.  This review comprises the remainder of the 
contents of this subsection. 

 There are three types of mathematical objects relevant for the current 
development of vulnerability criteria:  

 Random event: an event that may or may not occur in a given set of conditions 
(example: tossing a coin results in “tails”) 

 Random variable: a number that appears as the result of a random event (a 
number given by throwing dice) 

 Stochastic process: a set of random numbers depending on each other. 

 

3.2.2 Random Events 
 

 Probabilistic independence/dependence is a very important concept. Two random 
events A and B are independent, if the probability that event A will happen does not affect 
in any way the probability of event B.  The probability that both events A and B will 
occur simultaneously is just the product of these probabilities, if the events are 
independent: 

 

)()()( BPAPBAP   (3.1) 

 

 If random events A and B are dependent, then the probability of occurrence of A is 
affected by the probability of occurrence of event B. Mathematically, this is expressed 
through the probability that event A will occur, if it is known for sure that the event B 
happened.  This probability is known as the conditional probability and is defined as:  
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 Formula (3.2) allows for examination of the difference between independent and 
dependent events, in terms of the probability of their simultaneous occurrence: 
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)|()()( BAPAPBAP   (3.3) 

3.2.3 Random Variables 
 

 Random variables are characterized by probability distribution functions, used in 
two forms: cumulative distribution function (CDF) and probability density function 
(PDF).  The former is defined as the probability that a random variable will not exceed 
the argument of the CDF: 

 

)()( xXPxF   (3.4) 

 

 Per the definition that the probability is a number between zero and one, the limits 
of the CDF are: 
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 The probability that a random variable will take a value in the interval from a to b 
is expressed through the CDF in a following way: 
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 The probability density function is defined as a derivative of the CDF: 
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 As a result, the probability that a random variable will take a value in the interval 
from a to b is expressed through the PDF in a following way: 
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 As a consequence of (3.5), the area under the PDF must be unity – this is known 
as a “normalization condition”: 
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 Besides the functions of distribution, random variables are also characterized by 
the moments of the distribution (or just, the moments).  There are two types of moments: 
initial and central.  The initial moment of order n is defined as: 
 






 dxxxf n
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 The most important initial moment is the mean value (a.k.a the mathematical 
expectance, the average). It has an order n=1: 
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 The central moment on the order n is defined as: 
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 The most important central moment is the variance.  It is the measure of variation 
of the random number around the mean value.  It is the central moment of the second 
order n=2: 
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 The variance has a dimension of square of the units of the random variable.  
Sometimes it is more convenient to operate with a characteristic of the same dimension. 
Therefore, the standard deviation is defined as: 

 

xx V  (3.14) 

 

 There are many distributions derived to describe behavior of different random 
variable appearing as a result of different circumstances.  However, one distribution is 
more important than others, as it is a “limit case” in a certain sense.  It is the normal, or 
Gaussian, distribution: 
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 Formally, the normal distribution is derived as a distribution of a sum of an 
infinite number of random variables; each variable may have any distribution, but if their 
contribution is about the same, the sum of these variables have a normal distribution.  
The practical importance of normal distribution is that if there are many random factors 
of the same level of influence, the result will have a normal distribution.  This is why 
errors of the measurement usually are assumed to be normal.  This statement is known as 
the “Central Limit Theorem”. 

 Two independent random events produce two independent random numbers (e.g. 
throwing two dice).  The joint distribution of two variables is characterized by the CDF 
and PDF that are functions of two arguments.  However, if two random variables are 
independent, their joint distribution is just a product of the one-dimensional (marginal) 
distributions): 

 

)()(),( yfxfyxf   (3.16) 

 

 Equation (3.16) is, in a sense, similar to the equation (3.1).  If the random 
variables x and y are dependent, their dependence is fully characterized with the 
conditional distribution of x, if y took a certain value (say y = b): 
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 Another characteristic of dependence is a correlation moment.  It is defined as: 
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 It is convenient to use a non-dimensional expression of the correlation moment, 
namely the correlation coefficient 
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 The correlation coefficient varies from -1 to 1.  If it is zero, the variables x and y 
are not correlated. Strictly speaking, absence of correlation does not prove independence 
in the general case.  Only normally distributed variables are independent if they are not 
correlated.  However, in most practical cases, absence of correlation is a strong indication 
of independence.  The opposite is always correct, independent variables are not 
correlated.  
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 If the correlation coefficient is close to positive or negative unity, the correlation 
is very strong.  In case of unity (positive or negative), there is a deterministic relation 
between two random variables.   

 Two random variables may be related with a deterministic function, like a linear 
function, square, and eventually any type of function: 

 

)(xy   (3.20) 

 

 Knowing what this function is allows determination of all the characteristics of 
the random variable y, if similar characteristics are known for the random variable x.  For 
example, the mean value of y can be found as: 

 

   xy mxmm  )(  (3.21) 

 

 Other characteristics, like variance and distribution also can be found. 

 

3.2.4 Stochastic Processes 
 

 Finally, the stochastic process is a set of interdependent random variables.  Wave 
elevation at a point is a very good example of one-dimensional stochastic process.  Here, 
probabilistic dependence describes the fact that water is a heavy fluid, so its level cannot 
change instantaneously.   

 Similar to the random variable, the stochastic process is characterized by the 
CDF, PDF, mean value, variance and other moments of the distribution.  However, in the 
most general case, these figures may be dependent on time.  For example, significant 
wave height (which is related to the variance of wave elevation) changes with time when 
the change of wind speed and direction leads to a change in waves.  

 If the probability distribution of a process does not change in time, such a process 
is defined as a stationary. Naturally, mean value, variance, and other moments are also 
constant.  A stationary process is a good model of wave elevations during a relatively 
short time (<4 hours), while the change of waves normally may be considered 
insignificant. 

 The autocorrelation function is the measure of dependence within a process. It is 
defined as a correlation moment calculated between two values of the process, taken at 
the time instant t1 and time instant t2 
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 The autocorrelation function shows how quickly dependence decays in time. The 
current wave elevation at a point cannot really depend on what happened a half-hour ago, 
as memory of the wave surface does not last that long. If the process is stationary, the 
autocorrelation function only depends on the interval:  
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The autocorrelation function can also be calculated from the spectral density, s(): 
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 This brief review of available probabilistic tools helps with formulating the steps 
for the development of a probabilistic vulnerability criterion for the second level.  
Remaining considerations include: 

 Specify an appropriate distribution of wave lengths and wave heights; 

 Formulate criteria for a regular wave; 

 Consider these criteria as a deterministic function of random arguments wave 
height and wave length; 

 Use the distributions of wave length and wave height to find the mean values of 
the criteria.  

These steps allow consideration of specific features of the sea state, through the 
distributions wave lengths and wave heights, while also maintaining the simplicity of the 
regular wave approach.  

 

3.3 Joint Distribution of Wave Number and Wave Heights 

3.3.1 Envelope of Wave Elevations 
 

 This section is focused on the derivation of the joint distribution of wave lengths 
and wave heights, as this is the key element of the model used for the wave environment.  
This model is based on the work of Longuett-Higgins (1957; 1976; 1984). 

 Strictly speaking, the wave surface is a random field, or three-dimensional 
stochastic process.  However, for the development of probabilistic vulnerability criteria 
for pure loss of stability, several significant simplifications can be made. 

 Because the objective is the determination of vulnerability, the model can be 
limited to long-crested seas.  Changes of stability in long-crested seas are expected to be 
more dramatic than in short-crested seas, as there is no angular spread of wave energy.  
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Because the objective is wave height and length only, changes of the wave profile, while 
the wave passes the ship, can be neglected. 

 These two simplifications allow for consideration of only one dimension: the x-
coordinate.  The stochastic process of wave elevation in space can be presented as: 
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Here, ki is set of wave numbers (spatial frequencies) used for discretization of the given 
spectral density, rWi is amplitude of the i-th component and i is the phase shift for the ith 
component.  The wave numbers are related with frequencies through the deep-water 
dispersion formula: 
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Here g is the gravity acceleration. 

 To obtain joint distributions, following of Longuett-Higgins (1957; 1976; 1984), 
consider the envelope presentation of the wave along the x-axis: 
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Here the process z(x) is presented through two other stochastic processes: amplitude, or 
envelope, a(x), and phase (x).  Originally, the envelope presentation was developed for 
a stationary normal process by Rice (1944; 1945), so it is fully applicable for wave 
elevations.  The envelope, a(x), is defined through a complimentary process, y(x), which 
is the result of the Hilbert transformation of the process z(x): 
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 The envelope is defined as: 
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 Obviously, the variance of the complimentary process is identical to the variance 
of wave elevations: 
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 The dependency of two processes can be expressed through the cross-correlation 
function (similar that autocorrelation function, but defined for two different stochastic 
processes taken at different points). 
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 Since both the processes z(x) and y(x) are stationary, the cross correlation function 
depends only on the difference in x-coordinates: 

 

       








 dydzmxxymxzxxyxzfxC yzzy )()()(),(  (3.32) 

 

 The cross-correlation function (as well as autocorrelation function) can also be 
expressed by averaging along the x-axis.  
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Here E(..) is an averaging operator along the axis x: 
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Similarly, the autocorrelation function can be expressed as: 
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 Substitution in the presentation of (3.25) and (3.28) allows re-writing both the 
autocorrelation of the process z and cross- correlation of processes z and y as: 
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 The stochastic processes z(x) and y(x) are not correlated if the x-coordinate is 
fixed, since the phases were shifted 90 degrees. 

 

0)0( C  (3.38) 

 

 Since both the processes x(t) and y(t) are normal, they are also independent at the 
fixed point.  However, the values of the processes may be correlated, if they are taken at 
different points on the x-axis 

 Similar to autocorrelation function, the cross-correlation function is related with 
spectrum through the sine Fourier transform in time and in space 
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Here S(k) is spatial spectral density 

 

3.3.2 Joint Distribution of Envelope and Phase 
 

 Consider the probability that the envelope takes a particular value. Taking into 
account (3.29) , it can be expressed in a form of the following inequality 
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The probability of satisfying the inequality (3.41) is directly related with the PDF of the 
envelope, f(a): 
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The probability (3.42) can be evaluated if the joint distribution of z and y is known:  
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Here f(z,y) is a joint distribution of the original process z and its complimentary process 
y. Since both these processes have normal distribution; their joint distribution is also 
normal: 
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Here czy is a correlation coefficient.  
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 Taking also into account that the variances of the original process z and its 
complimentary process y are identical (3.30):  
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An substitution of the distribution (3.46) into Equation (3.43) together with a transition to 
polar coordinates yields: 
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Marginal distribution is defined as: 
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Then, consider f(a) as a marginal distribution of the joint distribution f(a,). 
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This joint distribution f(a,), then is expressed as: 
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The right-hand side does not contain the phase variable . This means that the variables 
a and  are independent. The PDF of a can be found by the integration of (3.50) by  
from 0 to 2
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This distribution is known as the Rayleigh distribution. 

 The distribution of the phase can be found from the formula (3.50) using the 
established fact of independence of envelope and phase: 

 

   






 20;

2

1

)(

,

af

af
f  (3.52) 

 

The phase in the envelope presentation follows a uniform distribution from 0 to 2. This 
concludes consideration of PDFs of the envelope and the phase. 

 

3.3.3 Joint Distribution of Envelope and Phase in Two Points 

 

 Consider the four-dimensional distribution of values z and y of x and of x+x. It 
can be presented as a system of four random variables: 
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 Since the processes z and y are normal, all four variables have a normal 
distribution.  Then the distribution of the vector U is completely defined by a covariance 
matrix. 

 The variables z(x) and y(z) are not correlated, and the variables z(x+x) and 
y(x+x) are not either.  However, the z(x) and y(x+x) are correlated with the correlation 
coefficient 
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 A similar formula can be written for another “cross-pair” of the random variables 
z(x+x) and y(x). 
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 Note that the correlation between z(x) and z(x+x) is expressed through the 
autocorrelation function: 
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 The same can be written for the correlation between y(x) and y(x+x): 
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 The covariance matrix can be written as: 
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 The four-dimensional normal distribution is expressed as: 
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Here the superscript T stands for the transpose operation. It converts a vector-column into 
a vector-row. K-1 is an inverse covariance matrix. It is expressed as: 
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Here 
22 )()(1)( xcxrxp   (3.61) 

 

The determinant of the covariance matrix is: 
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Substitution of (3.62) and (3.60) into (3.59) yields the following expression for the four-
dimensional distribution: 
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To avoid a bulky formula, the following nomenclature was used in formula (3.63): 
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 Formula (3.63) describes probability density in the four-dimensional space with 
coordinates: z1, z2, y1, y2. The next step is to re-write it in polar coordinates, which is 
defined as follows: 
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The new coordinates are: 
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To complete the transition, two pairs of rectangular coordinates (z1, y1) and (z2, y2) are 
substituted with (a1, 1) and (a2, 2). Then the expression needs to be multiplied by a1 a2 
as the element of the area in the polar coordinates a d da.  
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The expression (3.67) can be further simplified by the substitution: 
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3.3.4 Distribution of Phase and Its Derivative 
 

 The joint distribution of phases in two points can be obtained by integration of the 
distribution (3.69) by the value of envelope a1 and a2 
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Where  
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2 cos1 p  (3.71) 

 

 The joint distribution of the phase and its derivative can be derived from the joint 
distribution (3.70). This problem can be classified as multivariate probability 
transformation, when the distribution of one random vector is derived from the 
distribution of the other random vector. It also implies that these random vectors are 
related to the deterministic vector valued function. 
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 The derivative is defined as a limit: 
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 Formula (3.73) represents a component of a vector-valued deterministic function 
of a random vector; the other component is: 
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 Since the first component of the function (3.74) maps 1 into itself and does not 
depend on x, the symbol of limit can be applied to the entire function: 
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Assuming x being small: 
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 The formulation of the problem of multivariate probability transformation is 
completed. Its solution is well-known from the general theory of probability (see, for 
example, Goodman 1985): 
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 Here vector valued function  is an inverse to the vector valued function  and 
J stands for the determinant of Jacobean matrix. 
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 The determinant of the Jacobean matrix of the inverse function is expressed as: 
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Substitution of (3.79) and (3.78) into (3.77) to the following expression for the 
approximate joint distribution: 
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 The exact distribution of the envelope and its derivative is actually a limit of 
(3.80), when x tends to zero: 
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Where  is defined as: 
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 Taking that into account, in accordance with equation (3.68) 
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 The value of correlation and cross-correlation at zero 

 

1)0( r  ; 0)0( c  (3.84) 

 

 While in accordance with equation (3.61) 
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 The limit of  can be evaluated as  
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 This leads to uncertainty 0/0, if a limit in (3.81) is attempted.  To overcome this 
uncertainty, the quantities depending on x may be expanded into Taylor series about the 
zero point (the Maclaurin series) 
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 Consider the derivatives in (3.87): 
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The derivatives of the auto- and cross-correlation functions are: 
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The values of these derivatives at x = 0 are expressed as:  
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The value )0(c  is the mean wave k1 as determined from the spectral density, while the 
quantity )0(r   has a meaning of the second moment of the spectral area, normalized by 

the variance and expressed in term of wave number. Its usual nomenclature is 2
2k . As a 

result, the equation (3.87) can be re-written as: 
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 Similar formulae can be derived for other functions: 
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 Substitution of equations (3.98) through (3.100) into (3.81) removes uncertainty 
and reveals the final result: 
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 Note that equation (3.101) does not contain phase, , only its derivative. This 
means phase and its derivatives are independent. 

 

3.3.5 Distribution of Envelope and Derivative of Phase 
 

 The procedure described in subsection 3.3.4 can be applied in order to derive the 
four-dimensional joint distribution of envelope, phases, and their derivatives.  This is still 
a multivariate probability transformation, applied to the distribution (3.69) using the 
following vector valued function: 
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 (3.102) 

 

The approximate inverse function is 
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The Jacobean is expressed as: 
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 To derive the four-dimensional distribution, the Jacobean and the approximate 
inverse function (3.103) are used with the original distribution (3.69): 
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After the substitution and evaluation of the limit, the final result is expressed as: 
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 The joint distribution of the envelope and derivative of phase can be derived by 
the integration of (3.106): 
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This integration does not create any difficulties, the first integral equals unity while the 
second integral equal 2: 
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3.3.6 Joint Distribution of Wave Amplitude and Wave Number 
 

 As a spectrum of wind-driven waves usually has a peak, which contains a 
significant part of the wave energy, the phase in the equation (3.27) may be presented as  
 

)()()(*)()( xxxkxxxx   (3.109) 
 
Here k(x) is a relatively slowly changing wave number associated with the absolute value 
of the spatial derivative of the phase . The rest of the phase is presented as a stochastic 
process, (x), or (x). These figures are not essential here: their role is to model the 
spatial autocorrelation function, where only a single wave event is addressed. 
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To derive the joint distribution of wave number and wave amplitudes, the derivative of 
the phase in (3.108) needs to be substituted by its absolute value.  The absolute value of 
the derivative of the phase,  can be considered as a deterministic function of a random 
variable. This is again the problem of multivariate probability transformation.  Because 
only one variable is involved in the transformation, the problem can be solved as one-
dimensional using conditional distribution.  

 Consider the conditional distribution of the derivative of the phase, taking into 
account that the distribution of amplitude (envelope) follows Rayleigh (3.51) 

 



















)(

)(

2
exp

2)(

),(
)|(

2
1

2
2

2
1

2

2
1

2
2

kk

k

V

a

Vkk

a

af

af
af  (3.111) 

 

 The function of the absolute value is: 
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 This function is not monotonic, but it has two monotonic sub-domains. Therefore, 
its distribution contains two components: 
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Here v(k) is a function inverse to (3.112) and v is its derivative. Because the function u is 
not monotonic, its inverse expression is not single-valued, so two values exist at the same 
time for all k, and its derivative is also dual-valued: 
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Therefore,  
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The application of (3.115) for (3.113) yields the conditional distribution of wave number: 
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 (3.116) 

 

Finally the joint distribution of wave number and amplitudes is expressed as: 
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3.3.7 Numerical Example  
 

 Sample calculations were performed to illustrate the distributions derived with 
Envelope Theory.  A Bretschneider spectral density was used (Lewis 1989): 

 

 45 exp)(   BAs  (3.118) 

 

Here  is wave frequency, while A and B are constants defined through the significant 
wave height HS and the period corresponding to mean frequency T1. 
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 The period corresponding to the mean frequency has the following relation with 
the mean zero-crossing period Tz and modal period of the spectrum Tm: 
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mmz TTTT  773.0;71.0 1  (3.120) 

 

 The spectral density used for further sample calculations is shown in Figure 3.2. 

 

 
Figure 3.2 Temporal Spectral Density for Bretschneider Spectrum for Significant Wave Height= 11.5 

m and Modal Wave Period= 16.4 s 

 

 Transition to the spatial spectral density is done through the dispersion relation 
(3.26). As the variance in space and time must be the same, the derivation of spatial 
spectral density is a substitution of variables from a mathematical point of view: 
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Here S(k) stands for spatial spectral density: 
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The spatial spectral density for the numerical example is shown in Figure 3.3 

 

 
Figure 3.3 Spatial Spectral Density for Bretschneider Spectrum for Significant Wave Height= 11.5 m 

and Modal Wave Period= 16.4 s 
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 Numerical integration in formulae (3.95) and (3.96) encounters convergence 
difficulties caused by the empirical nature of the Bretschneider formula (3.118).  To 
avoid this difficulty, an upper limit is established for wave frequency (Lewis 1989) 

1
lim 916.15  sm  (3.123) 

Here m is a modal frequency: 
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The dispersion relation leads to the following expression for the upper limit of the wave 
number: 
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Then the mean value of wave number is expressed as: 
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The value of k2 (related to the second moment of the spectral area, normalized by the 
variance): 
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 The marginal distribution of the amplitude (envelope), defined by formula (3.51), 
does not differ for temporal or spatial consideration. It is shown in Figure 3.4. The 
marginal distribution of the derivative of phase can be easily obtained from equation 
(3.101) by taking into account that phase is distributed uniformly from 0 to 2see 
Figure 3.5a). 
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Figure 3.4 Marginal Distribution of the Amplitude / Envelope (Rayleigh Distribution) 
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The marginal distribution of the wave number can be evaluated using formulae (3.115) 
and (3.128).  The distribution is shown in Figure 3.5b. 
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Figure 3.5 Marginal Distribution of (a) the Derivation of Phase and (b) the Wave Number  

 

 Figure 3.6 shows conditional distributions for the derivative of the phase (Figure 
3.6a) and the wave number (Figure 3.6b) calculated for a series of sample amplitude 
value.  With the increase of the amplitude, both distributions become “thinner,” and the 
variance must be decreasing.  At the same time, the conditional distribution of the 
derivative of the phase remains unchanged, while the distribution of wave number 
experiences some shift. The shape of the distribution of the derivative of the phase 
appears to be normal.  A closer look at the formula (3.111) reveals a normal distribution 
for the conditional derivative of the phase, with the variance and mean value expressed as 
follows:  
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The mean value and variance for the conditional distribution of the wave number cannot 
be expressed through elementary functions.  At the same time, the distribution (3.116) is 
the distribution of the absolute value of a normal variable (folded normal distribution).  
The mean value and variance of the folded normal distribution are known and can be 
used to express the conditional mean value and the conditional variance of the wave 
number as function of amplitude.  The conditional mean value is expressed as: 
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Where  
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Figure 3.6 Conditional Distribution of the Derivative of the Phase (a) and the Wave Number (b), 

Calculated for Sample Values of the Amplitude 

 

The conditional variance of the wave number is expressed as: 
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 The graphs for these functions are given in Figure 3.7.  For the considered 
example, the conditional mean value and variance of the derivative of the phase and the 
wave number converge starting at a value of wave amplitude of 5 m.  This also means 
that the lengths of large waves are likely to have a length close to the mean, as the 
variance of the wave number deceases quickly with the growth of amplitude. 
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Figure 3.7 Conditional Mean Value (a) and Variance (b) of the Derivative of the Phase (Dashed) and 

the Wave Number (Solid), as Functions of Wave Amplitude 

 

 Finally, Figure 3.8 shows plots for the joint distributions of the amplitude and the 
derivative of phase (Figure 3.8a) and the wave number (Figure 3.8b).  The latter 
represents the final result of this study, as it can be used to estimate the probability of 
encounter with the wave of a certain height and length. 

 

 
Figure 3.8 Joint Distributions of the Amplitude and the Derivative of the Phase (a) and the 

Amplitude and the Wave Number (b) 

 

3.4 Level 1 Vulnerability Criteria 
 

 Both parametric roll and pure loss of stability are driven by stability variations in 
waves.  As was discussed in subsection 2.1.1, certain features of the hull shape are 
“responsible” for stability.  The level 1 criterion proposed here is focused on these 
geometric features. In principle, this criterion can be used as the level 1 criterion for both 
parametric roll and pure loss of stability.   
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 Because both modes of intact stability failure considered here, pure-loss and 
parametric roll, are fundamentally a result of the relation between variations in the area of 
the waterplane and the location of the wave crest along the hull, a common criterion to 
assess level 1 vulnerability is proposed. However, this was not applied for level 1 
parametric roll criteria, the reasons for which were discussed in the previous section.  
Four prospective criteria are discussed, along with the results for the sample ships 

 A method to assess level 1 vulnerability to pure-loss of stability, based on static 
characteristics of the hull form, is proposed and four criteria were examined. The first 
criterion considered the value of the total coefficient for vertical “wall-sidedness,” CVWS, 
or the variability of hull shape from the maximum dimensions over the range of draft, 

   ];[,max ddddzzAWP  , which is similar to the more traditional vertical 

prismatic coefficient, CVP, taken from the calm waterplane. This provides an indication of 
the change of the shape of the hull from the volume projected using the maximum 
waterplane dimensions over the vertical height of the ship. 
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 The second criterion considered the average of the vertical wall-sidedness 
coefficients for the fore and aft quarter portions of the hull, both above and below the 
waterline (see Figure 3.9).  For each of the four sections (fore, aft, above, and below), the 
CVWS was computed as the fraction of the volume from the maximum waterplane 
projection for the given section. Then the average value for the four sections was used to 
provide an indication of the total relative changes for the bow and stern shapes, both 
above and below the waterline because these are the regions the form variations typically 
occur. 

 

 
Figure 3.9 Notional Ship Profile With the Four Portions of the CVWS Considered for the Level 1 

Vulnerability Assessment 
 
 The third criterion considered the ratio of the transverse met centric radius to the 
height of the transverse metacenter above the keel.  

 



 

 73

KM

BM
C 31  (3.135) 

 

 The fourth criterion considered the ratio of the transverse metacentric radius to the 
beam. 
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 The first criterion does not show any clear separation between the ships which are 
known to be vulnerable and the ships which are not (Figure 3.10 ). However, the second 
criterion, the average of the vertical wall-sidedness coefficient for the fore and aft 
quarters of the ship, seems to provide useful separation between the ships (Figure 3.11 ) 
for this sample population. 

 
Figure 3.10 Total CWS, Both Above and Below the Waterline, for the Sample Ship Population 

 

 Based on this sample population of ships, an initial estimate of the threshold for 
the standard could be proposed around 0.75-0.80. Ships above this value, the Bulk 
Carrier, Tanker, and Series 60 are considered to be conventional vessels, not at risk for 
failures related to righting lever variations in waves. However, all of the other nine ships 
fall below this value, the highest being the General Cargo ship 2, or C4, with a value of 
0.75. The ships with the lowest values are Containership 5 (the C-11 containership) and 
the RoPax, which have values of 0.69 and 0.67, respectively 
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 Of the four vertical wall-sidedness coefficients, fore and aft quarter, above and 
below the waterline, the aft coefficient above the waterline has the least variation for the 
ship population examined. However, in order to still account for ships outside this 
population, including ones with unconventional topside stern shapes, this effect should 
still be included. 

 

 
Figure 3.11 Total Average CVWS for the Fore and Aft Quarters of the Ship, both Above and Below the 

Waterline, for the Sample Ship Population 
 

 The third and the fourth criteria, using ratios with the transverse metacentric 
radius, did not show any clear separation between the ships which are known to be 
vulnerable and the ships which are not. 

 The proposed method for level 1 vulnerability assessment does not consider the 
relative size of the ship and the waves. Typically, it is assumed that higher sea states are 
more likely to result in stability failure. However, waves of large height are more likely 
to have larger length and waves of large length may not greatly affect stability, depending 
on their comparison with ship length. This important consideration is included in further 
study, discussed below. 
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3.5 Level 2 Vulnerability Criteria 

3.5.1 Formulation of the Criteria 
 

 As was discussed earlier in this section, pure loss of stability may be considered 
as a single wave event because of instantaneous changes in waterplane area. Typically, 
the worst-case wave length is close to the length of the ship, λ/L = 0.75~2.0. However, in 
order to account for the effect of ship size relative to the wave conditions, righting lever 
variations should be evaluated in irregular waves. To characterize an event of pure loss of 
stability, the distribution of random wave numbers and wave amplitudes, f(a,k), is used to 
evaluate the statistical weight of a wave encounter: 
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 The GM value is calculated for each sinusoidal wave, with characteristics as 
defined above. These calculations are repeated for different positions of the wave crest 
along the ship length, so a complete wave pass is presented. 

 Calculation of the time while the stability is decreased can be easily performed 
when the GM is considered as a function of the wave crest. The critical GM was 
calculated in accordance with the 2008 IS Code (Figure 3.12). 

 
Figure 3.12 Calculation of “Time-Below-Critical-GM” 

 

 Points x1 and x2 (Figure 3.12) show the distance when the GM remains below the 
critical level (based on 2008 IS Code), while the wave passes the ship. The “time-
duration-below-critical GM”, tbc, can be calculated as: 
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where c is wave celerity and Vs is ship speed. The time–below–critical GM is a random 
number in irregular waves. Its mean value is estimated as: 


i j

ijijWtbctbcm )(  (3.139) 

The criterion value, Cr1, is proposed as the following ratio:  
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1  (3.140) 

 This criterion assesses the significance of stability changes in waves. If stability is 
degraded only for a short duration, the resulting ship response may not be significant. 
However, for longer durations of decreased stability below the critical level, the restoring 
moment may be degraded enough to result in a dangerously large heel angle. 

 The justification of assigning a critical level of GM can be done in a following 
way. As the GM variation due to the wave-pass takes care of waterplane changes, the 
critical GM has to take into account the features of hull form that can provide additional 
buoyancy at large heel angles. The influence of these features, such a flared bow, is 
reflected in the position of the maximum of the calm-water GZ curve. This can be 
illustrated by a comparison of the GZ curve of two notional ships from ONR topside 
series (Bishop, et al., 2005). These ships have exactly the same hull shape below the 
calm-water waterline, but differ in topside configuration, one with flare and one with 
tumblehome. To illustrate the effect of topside configuration, Figure 3.13 shows the GZ 
curve calculated for the same value of KG for each of the two topside configurations. 

 

 
Figure 3.13 Geometries and the GZ Curves of the ONR Tumblehome (Naval Combatant 2) and 

Flared (Naval Combatant 1) Topside Configurations (KG=7.5 m in Both Cases) 
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 As shown in Figure 3.13, the angle of maximum GZ of the flared topside 
configuration is much larger than that of the tumblehome topside configuration.  The 
difference in the value of the maximum of the GZ curve is even more dramatic.  
However, the angle of the maximum of the GZ curve is a preferable measure.  Stability 
failure near a wave crest is a phenomenon occurring at a very small encounter frequency, 
while the wave crest is slowly moving along the hull.  As a result, heeling may occur 
almost statically; so in this case, the angle of maximum represents the actual stability 
range. All these parameters of the calm water GZ curve are related to the 2008 IS Code 
criteria in one way or another. Therefore, setting the level of critical GM, based on these 
criteria, seems to be reasonable, because it takes into account the influence of large 
volumes of buoyancy that may be used as a stability reserve. 

 The second criterion is set to detect significant durations of negative GM (see 
Figure 3.14).  The appearance of an angle of loll may lead to the development of partial 
stability failure faster, as the upright equilibrium is no longer stable.  It is quite possible 
that some ships may be more vulnerable for these types of failure than others. 

 The second criterion, Cr2, is based on characteristics of the time during which the 
angle of loll exceeds a certain limit angle, lim (30 degrees was used in this example). For 
each position of the wave crest along the hull, the indicator value, z, is calculated: 
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Figure 3.14 Deterioration of GZ Curve Near the Wave Crest (Illustration Only). 

 

 The angle of loll, loll, can be obtained from the “true” instantaneous GZ curve in 
waves, or from its approximation using a calm water GZ curve and the instantaneous GM 
in waves: 

 The time while the angle of loll is too large during the wave pass is expressed as 
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where t is the time-step (providing at least seven steps per period) and index k 
corresponds to a particular time instant during the wave passing.  
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 Formulation of the second criterion is similar to the first one: 

 




T

tbzm
Cr

)(
2  (3.143) 

 

where m(tbz) is the weighted average over the wave encounters: 
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 Results of calculations using the sample population of ships are discussed further 
in subsection 3.5.3. 

 

3.5.2 Evaluation of Stability in Waves 
 

 Details of the evaluation of the GM in waves for the assessment of pure loss of 
stability are presented in this subsection.  The encounter frequency of waves in the 
situation where pure loss of stability is possible (following and stern-quartering seas) is 
low.  Therefore, static balancing in trim and draft becomes relevant.   

 The area at each station and its moment relative to the vertical axis are expressed 
as function of the local draft, accounting for the sinkage and the trim:  
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i indicates the station number, bi(z) is the half-breadth at station i, at the local draft z. The 
volumetric displacement can be expressed as a function of the position of a wave crest an 
array of local drafts si Nizz ,1},{ 


: 

 

     )(5.0),( 1

1

1
11 ii

N

i
iiiiC xxzAzAzxV

st

 






 (3.146) 

 

xi is the coordinate of the i-th station in the ship-fixed coordinate system. 

 The moments of the hull relative to vertical and longitudinal axes are expressed 
using a similar formulation: 
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 Formulae (3.146) through (3.148) can be used to express coordinates for the 
center of buoyancy: 
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 Consideration of the time for the change of stability in waves is redundant and the 
wave profile along the hull is considered as a function of wave crest position only.  
Therefore, the local draft at each station comes from the formula, describing wave 
elevations along the hull, and depends on sinkage and trim. 
 

))(cos(),( cC xxkaxx   (3.150) 

 

 To account for the trim on the wave profile, the following auxiliary function is 
introduced: 
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This function equals zero when a point with coordinates xi and zi is exactly at the surface 
of the wave of amplitude aW, rotated by the trim angle   Then the elevation of the wave 
profile at the i-th station is defined through the inverse of the function calculated for 
each station located at xi: 
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Where zS is the value of parallel sinkage. 

 The wave profile along the ship hull is evaluated by satisfying equilibrium 
conditions through solving the following system of nonlinear algebraic equations, with 
trim and sinkage as unknowns 
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Once sinkage and trim are found, the profile of the wave along the hull can be found as: 
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),,,( CiSWLi xxzzz   (3.154) 

The moment of inertia of the waterplane made by the wave profile is: 
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Other hydrostatic terms are also needed to determine GM 
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Finally the value of GM in waves is a function of the position of a wave crest 

)()()( CCC xKBKGxBMxGM   (3.157) 

 It is known that balancing a ship (finding its equilibrium position) with sinkage 
and trim may significantly change the result for determining GZ in waves.  To 
demonstrate this effect, the calculations described above can be complemented by partial 
balancing (sinkage/displacement only) or no balancing results.  This demonstration is 
important, because balancing is the most intensive part of the calculation. 

 Partial balancing is implemented by setting  = 0 (to the calm water value) in 
formula (3.152); this converts a system of equations (3.153) into a single equation: 

00 )),,,(,( VxxzzxV CiSWLC   (3.158) 

Results for the moment of inertia of the area of the waterplane are shown in Figure 3.15. 

 
Figure 3.15 Change of the Moment of Inertia of the Area of the Waterline with Moving Wave Crest 

for Different Type of Balancing for ONR Tumblehome Topside Ship (Naval Combatant 2) 

 

 Figure 3.15 clearly shows that balancing both sinkage and trim results in a 
significant difference for the moment of inertia of the waterplane. It can also be seen 
from Figure 3.16, which shows the change of BM. The calculation of BM without 
balancing is done using the resulting volumetric displacement from the wave crest 
position. 
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 A similar approach was used to calculate the unbalanced KB, which is shown in 
Figure 3.17. 
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Figure 3.16 Change of the BM Value with Moving Wave Crest for Different Type of Balancing for 

ONR Tumblehome Topside Ship (Naval Combatant 2) 

 

 
Figure 3.17 Change of the KB Value with Moving Wave Crest for Different Type of Balancing for 

ONR Tumblehome Topside Ship (Naval Combatant 2) 
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 As seen in Figure 3.17, balancing with sinkage has the most influence for the KB 
value.  Figure 3.18 shows GM in waves calculated with different balancing options.  It is 
clear from Figure 3.18 that these balancing options have a significant influence on the 
initial stability in waves.  Two features should also be noted.  First, the magnitude of the 
change of stability is the largest for the unbalanced results.  Second, the ONR 
tumblehome topside ship is an example of an unconventional vessel and, therefore, the 
observations of Figure 3.15 through Figure 3.18 may be generally applicable. 

 Stability changes in waves are not limited to GM; the entire GZ curve experiences 
changes.  The main advantage of using GM is simplicity and to enable the possibility to 
perform spreadsheet style calculations. Using GM only for the evaluation of stability in 
waves also can be considered as an approximation, where the change of GM in waves is 
used to “modulate” the calm-water GZ curve. 

 
Figure 3.18 Change of GM in Waves with Moving Wave Crest for Different Type of Balancing for 

ONR Tumblehome Topside Ship (Naval Combatant 2) 
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 To evaluate the level of approximation introduced by “modulation” (3.161), the 
entire GZ curve was computed using a preprocessor, PRELMP, of the advanced panel 
code LAMP (Lin and Yue, 1990; 1993).  The preprocessor uses a quasi-static wave and 
computes the righting moment by integrating pressures around the hull. Another tool 
capable of performing these calculations is EUREKA (Paulling, 1961). It was 
demonstrated that PRELMP calculations are identical to EUREKA (Belenky and Weems, 
2008). The results of the direct calculation of the GZ curve in waves for the same 
conditions are shown in Figure 3.19, while Figure 3.20 shows the approximate 
“modulated” GZ curve. 
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Figure 3.19 GZ Curve of the ONR Tumblehome Topside Ship in Wave Calculated with PRELMP 

 

 
Figure 3.20 GZ Curve in Wave of the ONR Tumblehome Topside Ship Approximated with 

Formula (3.161) 

 

 The comparison between GZ curves in Figure 3.19 and Figure 3.20 shows the 
generally conservative character of approximation (3.161) as the influence of the wave, in 
general, is slightly exaggerated by the approximation (3.161). Despite the approximation, 
which is not capable of representing all the details of stability changes in waves, the 
approximation formula still seems to be a reasonable tool for vulnerability-level 
assessment. 

 

3.5.3 Results for Sample Population 
 

Results are shown for calculations using the two criteria (Cr1 and Cr2) for the sample 
ships (Figure 3.21, Figure 3.22 and Table 3). The results are given for Sea State 7 and an 
operational speed of 15 knots, with the critical KG based on the conditions obtained from 
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the criterion values as a function of the sea state. An example of this is presented in 
Belenky and Bassler (2010).  

 Comparing the sample calculations for the level 2 probabilistic criterion, Cr1, it 
can be observed that there is a great distinction between the Fishing Vessel 1 (ITTC-A2) 
and the Naval Combatant 2 (ONR tumblehome topside hull). Both known to be 
vulnerable to pure loss of stability (e.g. Spyrou, 1996; Umeda, et al., 1999; Bishop, et al., 
2005; Umeda & Hashimoto, 2006; Bassler, et al., 2007; Hashimoto, 2009), compared to 
other ships, which are not known to be vulnerable to this type of stability failure. The 
exception to this trend is the notional RoPax. Given these results, and the results of 
sample calculations with a notional naval fleet (Belenky and Bassler, 2010), a standard 
using the first criterion could be set at 1.0.  

 The second criterion indicates possible vulnerability for the notional RoPax vessel 
that is similar to one that attained large roll angles in stern waves (MNZ, 2007). This is 
due to the different specific mechanism of pure loss that was manifested for this ship 
type. A standard using the second criterion could be set notionally at 0.05. However, this 
should be examined with the results of additional sample ships which have increased 
vulnerability for this mechanism of pure loss of stability. 

 

 
Figure 3.21 Calculation Results for the Level 2 Vulnerability Criterion Cr1 for Pure Loss of Stability 

for the Sample Ships, Ship Speed of 15 kts, in Sea State 7 
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Figure 3.22 Calculation Results for the Level 2 Vulnerability Criterion Cr2 for Pure Loss of Stability 

for the Sample Ships, Ship Speed of 15 kts, in Sea State 7 

 

 
Table 3 Results for Vulnerability Level 2 Pure Loss of Stability in Sea State 7 

Type L GM Vs Cr1 Cr2 
Fishing Vessel 1 (ITTC A2) 34.5 1.97 15 2.56 0.00 
Naval Combatant 2 (ONR TH) 150 1.16 15 1.35 0.00 
Passenger Ship 276.4 3.42 15 0.37 0.00 
RoPax 137 0.36 15 0.34 0.11 
Fishing Vessel 2 21.56 0.51 15 0.28 0.00 
Naval Combatant 1 (ONR FL) 150 0.20 15 0.27 0.00 
Bulk Carrier 275 4.19 15 0.19 0.00 
General Cargo 1 (S60) 121.9 0.15 15 0.16 0.00 
General Cargo 2 (C4) 161.2 0.15 15 0.14 0.00 
Bulk Carrier 2 145 0.15 15 0.12 0.00 
Tanker 320 1.72 15 0.08 0.00 
Containership 4 283.2 0.15 15 0.08 0.00 
Containership 5 (C11) 262 0.15 15 0.06 0.02 
Containership 1 322.6 0.15 15 0.06 0.01 
LNG Carrier 267.8 0.15 15 0.05 0.00 
Containership 3 330 0.15 15 0.05 0.00 
Containership 2 376 0.15 15 0.04 0.00 
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3.6 Summary 
 

 This section describes the development of vulnerability criteria for pure loss of 
stability. Subsection 3.1 describes the physical background for this mode of stability 
failure.  The likelihood for this type of failure depends on the magnitude of the stability 
changes, as well as the probability of encountering a dangerous wave. 

 Taking into account the probabilistic character of pure loss of stability, subsection 
3.2 reviews the basics of probability theory which are used for further development of 
vulnerability criteria. In particular, an emphasis is made on the differences between 
random variables and stochastic processes.  

 Because pure loss of stability is a single-wave event, the joint distribution of wave 
numbers and wave amplitudes is a key to relate pure loss with irregular waves, while also 
accounting for the relative size of the ship and the waves.  Subsection 3.3 reviews a 
derivation of this joint distribution, based on envelope theory.   

 A proposal for the level 1 vulnerability criterion is considered in subsection 3.4.  
The proposal is based on the geometric characteristics of the hull, as these parameters 
reflect how significantly the waterline may change during a wave pass and therefore, are 
also related to possible stability deterioration on the wave crest. 

 Section 3.5 considers two level 2 vulnerability criteria.  The first one is based on 
the average time that the ship’s GM spends below the critical level during the wave pass. 
Specification of the critical level is also discussed.  The second criterion is based on the 
likelihood of appearance of very large loll angles during the wave pass.  Both criteria are 
based on the envelope presentation for irregular waves. 

 Sample calculations were performed using 17 ships. 
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4 Vulnerability Criteria for Broaching-to and Surf-Riding 
 

This section describes the development of vulnerability criteria for broaching-to, 
including the physical background of this mode of stability failure. Surf-riding 
phenomenon usually precedes broaching-to, so determination of the vulnerability for 
broaching-to can be performed by evaluating a ship’s propensity to surf-ride.  
Additionally, the mathematical background necessary for vulnerability criteria and two 
methods of calculating the speed, and the development of levels 1 and 2 vulnerability 
criteria, are presented.  Sample calculations were performed using 17 ships. 
 

4.1 Physical Background 
 

 Broaching-to is a violent uncontrollable turn, occurring despite maximum steering 
effort in the opposite direction.  As with any other sharp turn event, broaching-to is 
frequently accompanied with a large heel angle, which may lead to partial or total 
stability failure.  Broaching-to occurs in following and stern-quartering seas. 

 Broaching-to is usually preceded by surf-riding.  Surf-riding occurs when a wave, 
approaching from the stern, captures a ship and accelerates its to the wave speed (wave 
celerity).  While surf-riding, the wave profile does not vary relative to the ship.  Most 
ships are directionally unstable in the surf-riding situation; this leads to the uncontrollable 
turn, defined as broaching-to (or often, just “broaching”).  

 Therefore, the likelihood of surf-riding can be used to formulate vulnerability 
criteria for broaching-to.  In order for surf-riding to occur, the wave length must be 
within the range of 0.75~2.0 of the ship length and the ship speed should be around 75% 
of the wave celerity (depending on wave steepness).  Large ships are less likely to surf-
ride, as waves of the necessary lengths usually are simply too fast compared to the ship 
speed. Also, long and steep waves are rare.  

 Consider an example of surf-riding. Assume a wave with a length comparable to 
ship length has a celerity of 30 kts, while the ship’s engine is set at an rpm that provides a 
thrust corresponding to 20 kts in calm water (see Figure 4.1).   

 Sailing in calm water with a speed set at 20 kts means that the thrust (with 
account of the thrust reduction) produced by the propulsor equals the resistance at that 
speed (20 kts). When the wave overtakes the ship, axial wave forces push the ship back 
and forth, causing the ship to surge. During steady surf-riding, the ship’s speed equals the 
speed of the wave. To move a ship with the speed of the wave (30 kts), the thrust 
provided by the ship is not sufficient, and there is a difference between the ship’s thrust 
for 20 kts and the resistance of the ship at the (higher) wave speed. 

 As shown in Figure 4.1, the axial wave (surge) force is too small to compensate 
for this difference. Therefore, surf-riding is theoretically impossible at this speed 
condition. As a result, surging is the only possible mode of motion. 
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Figure 4.1 Surging in Following Waves. Surf-Riding is Impossible 

 

 Consider that the thrust setting has been increased to 22 knots, in calm water. 
Then the difference between the produced thrust and the resistance at the wave speed has 
decreased. At this speed, the axial (surge) wave force is enough to compensate for this 
difference and surf-riding becomes theoretically possible, but only if the ship is at a 
certain position on the front of the wave (see Figure 4.2).  

 Surf-riding is a stable equilibrium, achieved when a ship is located on the front 
slope of the wave close to the trough – shown here with a black dot in Figure 4.2 (another 
possible equilibrium is unstable – it is located near the wave crest, shown with a white 
dot in Figure 4.2). 

 Now, there are two possible modes of motions: surf-riding and surging. The result 
depends on the ship’s location along the wave length and the ship’s instantaneous speed. 
In order to observe surf-riding, the ship must be near the equilibrium and have sufficient 
instantaneous speed.  The first threshold corresponds to a thrust that enables surf-riding 
to be possible under certain (generally ideal) conditions. 

 Consider a further increase of the ship’s thrust up to 25 knots in calm water. The 
difference between the ship’s thrust and the resistance at the wave speed has further 
decreased. Now, the axial (surge) force is sufficient enough to cause surf-riding for a ship 
located anywhere along the front of the wave. Therefore, surf-riding is the only mode of 
motion, and surging is no longer possible (Figure 4.3). 

 The 2nd threshold corresponds to the speed setting where the surging ceases to 
exist and the surf-riding becomes inevitable at every position along the wave and any 
instantaneous speed.  
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Figure 4.2 Both Surging and Surf-Riding Are Possible, Depending on Position of Wave and 

Instantaneous Speed 

 

 
Figure 4.3 Surging is Not Possible - Surf-Riding is the Only Option 
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 Both speed thresholds depend on the wave length and steepness. Therefore, in a 
realistic seaway they are random figures and the likelihood of exceeding one of these 
thresholds can be used for vulnerability criteria.  The calculations show that the 1st 
threshold is easy to exceed, but in order to experience surf-riding, the instantaneous speed 
must be increased significantly when a ship is located at a particular position on a wave.  
The probability of such a coincidence is quite low.  Therefore, to avoid excessive 
conservatism, the second threshold should be used for the criteria. Once it is exceeded, 
the surf-riding is guaranteed for this particular wave. 

 

4.2 Mathematical Description of Surf-Riding in Following Seas 

4.2.1 Review of Mathematical Tools – Phase Plane Analysis 
 

 Phase plane analysis is one of the main tools used in the development of 
vulnerability criteria for surf-riding.  This subsection includes a brief overview of this 
tool.   

 A phase plane (sometimes the term “phase portrait” is also used) is a plot of 
velocity vs. motion.  Each of the curves in the phase plane is called “phase trajectory”. 
Each phase trajectory corresponds to a pair of initial conditions. For example, consider a 
pendulum (Figure 4.4a). The equation of small motions of a pendulum, without damping, 
is expressed as: 

02
0  xx  (4.1) 

 The two dots above the value x stands for the second derivative in time, i.e. 
acceleration, and 0 is the natural frequency of oscillations.  A cosine (or sine) function is 
an obvious solution for the equation (4.1), as the second derivative of the cosine function 
turns it into itself, but with an opposite sign: 
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 Substitution of (4.2) and (4.4) into differential equation (4.1), turns this equation 
into a true equality; hence, the function (4.2) is the solution of the equation (4.1). 

 To reveal the form of the phase trajectory, the angular velocity (4.3) should be 
expressed through the angle (4.2) and the time should be excluded from the equation.  If 
the angle (4.2) is multiplied by the natural frequency, then squared and added to the 
squared velocity (4.3), trigonometric functions disappear and the elliptic form of the 
phase trajectory becomes clear: 
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 The phase trajectory described by formula (4.5) is shown in Figure 4.4b.  For the 
solution (4.2), it starts at the point (1,0) of the phase plane.  To see the initial conditions 
corresponding to the solution (4.2), it is enough to set t=0 in the formulae for angle and 
angular velocity: 
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 The phase trajectory (4.5) corresponds to other initial conditions as well.  It can be 
seen if the sine function is used as the solution of equation (4.1) instead of cosine.  Then 
the initial point will be (0,1).  For this effect, a phase shift,  can be introduced in the 
solution (4.2): 

 

)cos( 0  tx  (4.7) 

 

 This will move the initial point to (cos(), -sin()), but will not change the phase 
trajectory (4.5), as shown in Figure 4.4b.   

 It is also easy to see that the introduction of amplitude (different than 1) into 
function (4.7) does not invalidate it as a solution of the equation (4.1): 

 

)cos( 0  tAx  (4.8) 

 

However, this solution leads to a phase trajectory different than (4.5): 
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This trajectory is also an ellipse, but with different semi-axes, that is concentric to (4.5), 
see Figure 4.4c.  These different ellipses correspond to different initial angles and 
therefore, show the different amplitude of oscillation of the pendulum.   

 In general, different initial conditions );( 00 xx   lead to different values of 

amplitude, A, and phase, : 
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 The complete phase plane for the pendulum is a family of curves, showing how 
angular velocity changes with angle for different initial conditions.  Figure 4.4c shows 
the complete phase plane for the small motions of the pendulum, without damping.  This 
type of phase plane, being one of the basic forms, is called a “center” phase plane. 

 The introduction of damping makes the sinusoidal motions decay and turns the 
phase plane from a set of ellipses to a set of spirals, see Figure 4.4d.  The special term for 
this type of the phase plane is the “stable focus.” 

 

 
Figure 4.4 Example of an Oscillator – Pendulum (a), Phase Trajectory without Damping for the 

Solution x=cos(0t) (b), Phase Plane without Damping (c) Phase Plane with Damping (d) 

 

 Equation (4.1) is only valid for small deviations of the equilibrium, where angles 
are so small that the value of the sine function can be approximated by the value of the 
angle expressed in radians. Therefore, it does not describe all the features of motions of 
the pendulum.  One of these features is an unstable equilibrium (shown in Figure 4.5a).  
The “straight-up” position is an equilibrium, as all of the forces are equal there, but it is 
not stable, as a small perturbation takes the pendulum back to the stable equilibrium.  
Motions in the vicinity of the unstable equilibrium (without damping) can also be 
described by a linear differential equation: 

 

02
0  xx  (4.11) 

 

 The phase plane of these motions is shown in Figure 4.5b.  Depending on how the 
perturbation was delivered (only displacement, only velocity, or both) and how it was 
directed, the pendulum returns to the stable equilibrium through a right-hand or left-hand 
rotation.  This is also one of the basic forms of the phase plane, called the “saddle.”  

 

 
Figure 4.5 (a) Unstable Equilibrium and (b) Phase Plane of Motions in its Vicinity, “the Saddle 

Point”  
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 To see the whole phase plane of possible motions without damping, one needs to 
combine the phase planes shown in Figure 4.4c (center) and in Figure 4.5b. (saddle), as 
there are only two equilibria for the pendulum: the stable one, “straight down,” and the 
unstable one, “straight-up.”  Because the motion is rotational, the phase plane is expected 
to repeat after 180 degrees (due to the symmetry of the oscillator). Note, that all the 
trajectories in Figure 4.5b are curves, with exception of two straight lines (shown in 
bold). These straight lines connect to each other after 180 degrees, see Figure 4.6, making 
a boundary separating the ellipses (actually ovals) and sine-like trajectories above and 
below the thick lines.  These sine-like curves correspond to a complete turn of the 
equilibrium. Because there is no damping, this rotation is infinite. 

 

 
Figure 4.6 Complete Phase Plane for Pendulum without Damping 

 

 This boundary trajectory is called the “separatrix,” for the cases when there are no 
external excitations, and an “invariant manifold” for the more general case, when the 
external excitation is present. 

 The introduction of damping will turn the ovals into spirals, but the separatrix still 
separates the initial conditions leading to the immediate attraction to the stable 
equilibrium from those that allow for at least one complete turn before the oscillator 
“moves down along the spiral” (see Figure 4.7). 

 
Figure 4.7 Complete Phase Plane for Pendulum with Damping 

 

4.2.2 Mathematical Model of Surging and Surf-Riding 
 

 Following (Belenky, et al., 2008), consider the simplest model for surf-riding of a 
relatively fast vessel in following regular waves.  The origin of the coordinate system is 
located on the wave crest: 
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0)(),()()(  GWGGGx FncTcRmm    (4.12) 

 

Here, m is the mass of the vessel, mx is longitudinal added mass; R is resistance in calm 
water, T is the efficient thrust in calm water (with thrust deduction included), c is wave 
celerity, and FW is Froude-Krylov wave force.  The symbol G stands for the distance 
between the wave crest and the center of gravity of the vessel and G  is the velocity of 

the ship relative to the wave celerity Finally, n is the commanded number of revolutions 
of the propeller— this is an independent parameter, related to the thrust delivered.  This 
equation also uses the assumption that the encounter frequency e is small (so the term 
containing time - et can be dropped from the equation of the wave force). 

 The Froude-Krylov force is a result of the integration of the incident wave 
pressure in the absence of the ship over the surface of the hull (a derivation is available 
from Belenky and Sevastianov, 2007): 
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Here, x, y and z are the coordinates of points on the surface of the hull, expressed in the 
ship-fixed coordinate system; y(x, z) is the half-breadth on a station with coordinate x at 
the depth z; d(x) is draft of a station at longitudinal position x; k is the wave number; A is 
the wave amplitude; and  is mass density of water.  Calculation of the Froude-Krylov 
wave force is straightforward. 

 Surf-riding occurs as the equilibrium.  Its position could be found from equation 
(4.12), assuming that 0 GG

 . 

 

0)(),()(  GWFncTcR  (4.16) 

 

 Resistance R(c) and thrust T(c,n) are considered in the system of coordinates fixed 
to the wave.  So the force, R(c), is the resistance required to tow a vessel with a speed 
equal to wave celerity c.  The value T(c,n) is actually the efficient thrust that would be 
created if a vessel sails with speed c, while the number of revolutions has been set to n. 

 As can be seen from equation (4.16), the wave force compensates for some of the 
resistance, so the equilibrium can be achieved for an engine setting less than that which 
would be required to provide a speed, c, in calm water.  That is why the balance between 
effective thrust and resistance ),()( ncTcR   is negative during the surf-riding.  
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 Figure 4.8 shows the wave force as a function of the distance from the wave crest 
and the balance between resistance and thrust superimposed on the wave phase.  An 
intersection of the wave force and the balance between resistance and thrust constitutes 
the solution of equation (4.16), which is the surf-riding equilibrium.  It can be clearly 
seen that there are two equilibria on each wave: one closer to the wave crest and another 
one closer to the wave trough. 

 

 
Figure 4.8 Surf-Riding Equilibria for a 100 m High-speed Vessel, Wave Height 6 m, Wave length 200 

m, Speed Setting 24 kts (Belenky, et al., 2008) 

 

 Engine-speed settings define how far the line of the resistance-thrust balance is 
from the origin. The line of the resistance –thrust balance is equal to the difference of the 
calm water resistance of the ship at the wave celerity and the thrust of the propulsor 
behind the ship i.e. with the thrust deduction included.  If these settings are too low, the 
balance line will never intersect with the curve of the wave force, and equilibria and surf-
riding itself are impossible in this case.  An engine setting that makes the balance line 
barely touch the wave force curve is of special interest.  Such a setting represents the 
boundary above which the surf-riding becomes possible for the given wave.  The calm 
water speed corresponding to such a setting usually is referred to as the first critical speed 
(in this case, it equals 13.53 kts). 

 If the surf-riding equilibria exist, one of them must be unstable and the other one 
stable.  Similar to the example with a pendulum considered in the subsection 4.2.1, 
unstable equilibrium must separate stable equilibria.  Analysis of the stability of 
equilibria (a brief description is given in (Belenky and Sevatianov, 2007) shows that the 
equilibrium in vicinity of the wave crest is unstable and the equilibrium near the wave 
trough is stable. 

 The next step of the analysis is to determine what types of motions in waves are 
possible, using phase plane analyses.  This result is shown in Figure 4.9.  Four equilibria 
are shown in this figure. Two stable equilibria have stable-focus-type of the phase plane 
surrounding them.  They can be recognized by the sets of spirals, pulling the dynamical 
system towards the stable equilibria, located at the points with coordinates (-150, 0) and 
(50, 0). The stable equilibria are separated by the unstable equilibria located at the points 
with coordinates (5,0) and (-195,0).  

 The phase plane in the vicinity of the unstable equilibria is a saddle point (Figure 
4.5).  As it was noted before, one should pay particular attention to the two straight lines 
of the saddle point, as they can be part of the boundary separating the initial conditions 
corresponding to the different types of motions. In the case of the pendulum without 
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damping (Figure 4.6), both these lines are part of the boundary between oscillatory 
motion and rotation.  In case of the damped pendulum (Figure 4.7), one line (with the 
negative slope) belongs to the boundary.   

 The dynamical system describing surging and surf-riding is somewhat similar to 
the damped pendulum: compare Figure 4.7 and Figure 4.9.  The straight line of the saddle 
point with the negative slope is a part of the boundary separating the initial conditions 
leading to surf-riding and surging.  As the origin of the coordinate system is located at 
wave crest and moving with the wave celerity, the surging motion is shown as a sine-like 
curve in this phase plane.  The point moves backwards along this curve with the time 
passed, because the average speed of the ship in surging mode is less than the wave 
celerity, so if the origin is moving with the wave, the ship in this coordinate system must 
be moving backwards. 

 
Figure 4.9 Phase Plane with Surging and Surf-Riding, Speed 22 Knots 

 

 Initial conditions corresponding to surging are located below and between the 
boundaries.  The phase plane also helps to understand how surf-riding can occur when a 
ship is sailing with the speed of 22 knots (in the considered example).  Assume that the 
ship is surging, therefore, the waves are overtaking her.  The average speed is somewhere 
around -6.4 m/s in the coordinate system of the Figure 4.9, meaning that the wave celerity 
exceeds the ship speed at 6.4 m/s.  

 It can be also checked by a simple calculation, knowing that the wave length is 
200 m and ship speed is 22 knots:  
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 So, in order to get into the surf-riding zone, the ship needs to be suddenly 
accelerated when she is at the particular spot on the wave.  For example, if she is at the 
wave through (100 m in Figure 4.9), she may need another 3 m/s to surf-ride (visually 
from Figure 4.9).  If she is around the wave crest, the speed addition is probably around 
5 m/s, and so on.  
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 Practically speaking, it is difficult to imagine how the ship can be accelerated with 
an additional of another 6 or 10 knots without changing speed settings. Therefore, in the 
considered example, the surf-riding at 22 knots setting, while theoretically possible, is not 
very likely.  

 Increasing the engine setting up to 24 knots in calm water leads to a dramatic 
change in the phase plane (see Figure 4.10).  The boundaries between surging and surf-
riding are unfolded. There is no longer any possibility of surging and the boundaries 
simply divide domains of attractions to the current or the next (or previous) wave. 

 
Figure 4.10 Phase Plane with Surf-Riding Only, Speed 24 knots 

 

 Somewhere between 22 and 24 knots, there is a speed that separates two distinct 
topologies of the phase planes: when surf-riding is only a possibility and when it coexists 
with surging.  This speed (for the considered example, 23.3.knots) is commonly referred 
to as the second critical speed.  In nonlinear dynamics, this is regarded as a type of global 
bifurcation, known as the heteroclinic saddle connection (“homoclinic” if one considers 
the cylindrical nature of system’s phase space).  The dynamics of surf-riding in 
quartering seas (as well as the consequence of broaching-to) due to this global bifurcation 
was identified and discussed in Spyrou (1996), on the basis of a surge-sway-yaw-roll 
model which produced the necessary connection between surf-riding and broaching-to 
behavior (see also Spyrou 2000).  

 To see the complete picture of development of this global bifurcation, it is more 
convenient to re-plot the phase plane in the cylindrical coordinate system, and the 
position on the wave is presented as: 
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where is the length of the wave, while the velocity coordinate G  remains the same.  

This transformation turns the sine-like trajectory of surging in Figure 4.9 into a closed 
oval-like curve, similar to the oscillatory mode of the pendulum without damping.  The 
surf-riding equilibria still appear as points.  

 This picture is shown in Figure 4.11, as a set of changing phase planes, while the 
speed setting is changed.  The first phase plane contains only surging, while surf-riding is 
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not possible. This is the situation shown in Figure 4.1, where surging force is insufficient 
to accelerate the ship to the wave celerity. The origin of the coordinate system is still 
located at the wave crest, but the periodic surging is seen as an oval due to the coordinate 
transformation (4.18). 

 The second phase plane in Figure 4.11 corresponds to the speed setting exactly at 
the first critical speed.  The wave surging force just touches the balance between the 
thrust and resistance.  This is a sort of degenerate case when the stable and unstable 
equilibria are located at the same point.  The appearance of this point, however, disturbs 
the shape of the surging cycle: so it is no longer an oval. 

 The third phase plane in Figure 4.11 reflects the situation shown in Figure 4.2 and 
Figure 4.9.  Surging and surf-riding co-exist, but the possibility of surf-riding is 
practically remote.  The shape of the surging cycle, however is more disturbed as the 
unstable equilibrium gets closer; despite the equilibrium being unstable, it is still capable 
of accelerating the ship– note that the surging trajectory has a maximum near the saddle 
point in Figure 4.9. 

 The fourth phase plane describes the “surf-riding only” situation (shown in Figure 
4.3 and Figure 4.10).  All of the initial conditions lead to the surf-riding equilibria and the 
periodic surging cycle no longer exists. 

 
Figure 4.11 Changing of Surging and Surf-riding Behavior with Increasing Speed Settings - Nominal 

Froude Number (based on Spyrou 1996) 
 

 The examination of the dynamics of surging and surf-riding shows that the criteria 
for danger of surf-riding should be based on the second critical speed, or the second 
threshold.  It truly separates the situations where surf-riding is inevitable. 
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4.2.3 Direct Numerical Method for the Second Threshold 
 

 Phase plane analysis allows one to find the second threshold by calculation of the 
boundaries and determining a speed when the boundary unfolds in the way shown in 
Figure 4.10. 

 One point of this boundary is known.  It is the unstable equilibrium.  Strictly 
speaking, the boundary consists of two phase trajectories, both of which take the system 
towards the unstable equilibrium.  These trajectories also can be seen in Figure 4.5b as 
spanning through the II and IV quadrant.  

 Because the trajectories lead toward the equilibria, in order to find these 
trajectories, the equation (4.12) should be integrated backwards in time.  Numerically it 
does not make any difference, as a mechanical problem expressed in an ordinary 
differential equation is completely reversible. Integration forward reveals the future, 
while integration backwards in time reveals the past of the motion. The phase trajectories 
found in such a way are unique. There are only two trajectories leading to the unstable 
equilibrium (see Figure 4.5b).  

 What happens if the integration of equation (4.12) starts with initial conditions 
which correspond exactly to the saddle point?  The initial position on the wave 
corresponds to the unstable equilibrium and the speed is zero.  Numerical integration of 
the equation forward in time takes the dynamical system from the equilibrium.  As the 
equilibrium is unstable any disturbance takes the system away from it.  The rounding 
error plays a role of this initial disturbance in the case of numerical integration of the 
equation (4.12).  Depending on the sign of this error, the dynamical system ends up either 
with surf-riding or surging, as in the case of co-existence shown in Figure 4.9.  In the 
case of surf-riding only, shown in Figure 4.10, the system goes to surf-riding either on 
this or the next wave. 

 If the integration is done backwards in time, the system will move along the 
boundary.  Again, depending on the sign of the rounding error, the system “chooses” the 
boundary going through quadrant II or through quadrant IV.  In order to avoid this 
uncertainty, it makes sense to introduce an initial small disturbance in the direction of the 
boundary, as shown in Figure 4.12. 

 
Figure 4.12 Initial Conditions for Calculation of the Boundary 

 

 To calculate the disturbance, equation (4.12) can be linearized.  The linear 
differential equation has a solution that is expressed with elementary functions. This 
solution can be used to set the initial point of integration.  
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 Linearization of the equation (4.12) involves linearization of the wave force at the 
unstable equilibrium (see Figure 4.13) and the balance between thrust and resistance. 

 
Figure 4.13 Linearization of Surging Wave Force at Unstable Surf-riding Equilibrium 

 

The linearized wave surging force is expressed as 
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Where GU is a location of unstable equilibrium, and KWL is the slope coefficient: 
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The influence of the surging speed on thrust can be neglected in the first expansion.  Also 
as the surging speed can be assumed small in comparison with wave celerity, resistance 
can be linearized: 
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KRL is the slope coefficient for the resistance 
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Then, the surging equation, linearized near the unstable equilibrium, is expressed as: 
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 The value in the right hand side is a constant, depending on the wave 
characteristics and the thrust settings.  Re-writing equation (4.23) into standard form 
yields: 
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Here bU is a constant expressing that the equation has been linearized at the unstable 
equilibrium: 
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The expression for the “repelling” coefficient kWL accounts for its negative value (it is 
always the case for the unstable equilibrium): 
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Finally x plays a role of the damping coefficient: 
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 The linearized equation (4.25) describes the motion near the unstable equilibrium.  
Its phase portrait is a saddle point.  It is very similar to the equation (4.11); the only 
difference is that it contains a damping term and a constant.   

 The objective of all these derivations is to determine the position of the starting 
points for integration, as shown in Figure 4.12.  Equations for the straight lines leading to 
and from the unstable equilibrium can be found using the characteristic equation of the 
linear differential equation  
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Two solutions of the characteristic equation, the eigenvalues, are expressed as: 
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 As it is well known from the linear theory of oscillators (see, for example 
Andronov, et al. 1966), the straight line trajectories of the saddle point can be expressed 
using the eigenvalues, see Figure 4.14. 

 

 
Figure 4.14 On the Calculation of the Initial Conditions for Calculation of the Boundary 

 

 Once the equation for the straight line trajectories of the saddle point have been 
defined, setting the initial points for the integration is trivial, as even a small disturbance 
from the unstable equilibrium (like 0.1 m) will serve the purpose.  Integration of the 
equation (4.12) backwards in time does not produce any difficulties, with the exception 
of setting the end point.  

 Calculations of the boundary are repeated for a series of thrust settings, until a 
critical one, corresponding to unfolding of the boundary, is found.  As it was shown 
above, the nominal Froude number corresponding to the unfolding of the boundary is the 
second threshold. 

 

 

4.2.4 Approximate Method for the Second Threshold 
 

 The direct numerical method for calculation of the second threshold has a solid 
technical background, but may require calculations that may be too cumbersome, even 
for a second level of vulnerability check.   

 Instead, an approximate method, namely Melnikov’s method, can present a 
practical solution (Spyrou 2006).  The main idea is based on the fact that the boundaries 
touch each other when the speed/thrust settings correspond to the second threshold.  
While it is not possible to catch this exact instant, the tendency can be very clearly seen 
in Figure 4.15. 
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Figure 4.15 Change of Location of the Boundary while Approaching the 2nd Threshold 

 

 Melnikov’s function is defined as the distance between the two boundaries.  
Therefore, the instant of achieving the second threshold corresponds to the zero-value of 
Melnikov’s function.  

 A closed form expression of Melnikov’s function is available for a dynamical 
system that can be approximated as a perturbation from the Hamiltonian system (here it 
mean autonomos dynamical system e.g. pendulum without an external forcing).  
Practically, it means that the system should be lightly damped, as a Hamiltonian system 
includes nonlinearity in restoring.  As a result, Melnikov’s method, in contrast with other 
perturbation methods, does require small nonlinearity in restoring to be applicable 
(Guckenheimer & Holms, 1983).  

 To apply Melnikov’s method, thrust and resistance need to be expressed with 
elementary functions. The solution available from Spyrou (2006) uses a polynomial 
approximation for thrust and resistance: 
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Here r1, r2 , r3 are polynomial coefficients for resistance that can be evaluated with 
standard regression methods. 

 The coefficients 0, 1 , 2 for thrust are defined as  
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22 11 Dwtc pp   (4.34) 

Here tp is the coefficient for thrust deduction, while wp is the wake fraction coefficient.  
Both coefficients are evaluated for calm water. D is the propeller diameter and  is mass 
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density of water. Coefficients c0, c1, c2 came from polynomial presentation of the 
coefficient of thrust KT: 

2
210 JcJccKT   (4.35) 

Where J is the advance ratio 

 
nD

wV
J pS 


1
 (4.36) 

 Then the balance between the resistance and thrust in the equation (4.12) can be 
expressed as: 

),()()(),(

),()(
3

3
2

21 ncTcRAcAncA

ncTcR

GGG

GG







 (4.37) 

Here: 

nrcrcrncA 1122
2

31 )(23),(   (4.38) 

)(23)( 2232  rcrcA  (4.39) 

33 rA   (4.40) 

 To apply Melnikov’s method, the equation (4.12) should be transformed into the 
non-dimensional form: 

q

r
xxpxpxpx  sin3

3
2

21  (4.41) 

Here: 

Gkx   (4.42) 

k is the wave number (spatial frequency) 

x

Fw

mm

Ak
q




  (4.43) 

AFw is amplitude of surging wave force: 

SAFw AgkA   (4.44) 

Note, that the cosine component in formula (4.13) is neglected, as it is small in 
comparison with the sine component, especially for long waves.  

 Coefficients p1, p2, p3 represent the change of resistance and thrust: 

 xFw mmkA

ncA
npp




),(
)( 1

11  (4.45) 

 xmmk

cA
p




)(2
2  (4.46) 
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  3
3

3

x

Fw

mmk

AA
p


  (4.47) 

 

The coefficient r (without any index) reflects the difference between resistance and thrust 
at the wave celerity 

 

 
 xmm

cRncTk
nr





)(),(

)(  (4.48) 

 

Finally, equation (4.41) is written in the non-dimensional time, expressed as 

 

tq  (4.49) 

 

 The Melnikov’s function for the equation (4.41) and given speed settings is 
expressed as (from Spyrou, 2006): 

 

321 3

32
2)(

4)(
)( ppnp

q

nr
nM





  (4.50) 

 

 Note that all the coefficients in the formula (4.50) are dependent of the elements 
of wave: amplitude, wave number, and wave celerity. 

 The number of revolutions corresponding to the second threshold nTr2 can be 
found from (4.50), by satisfying the condition: 

 

  02 trnM  (4.51) 

 

 The expression (4.51) is a nonlinear algebraic equation and can be solved with 
any appropriate numerical method. 

 

4.2.5 Sample Calculations  
 

 This subsection presents sample calculations including the evaluation of the 
second threshold with the Melnikov’s method, using equation (4.51) and the direct 
numerical method described in the subsection 4.2.3.  The calculations were performed for 
the sample population of 17 ships.  

 Resistance in calm water was estimated using the method developed by Holtrop 
(1984).  While this estimate may be not very accurate, nevertheless it seems to be 
acceptable for the sample vulnerability check; it is enough if the resistance estimate 
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captures just the principle features of the resistance curve.  Then the resistance curve was 
approximated with the third-order polynomial (4.30).  The result for the Fishing Vessel 1 
(ITTC ship A2) is shown in Figure 4.16. 

 Thrust was modeled with the open-water propeller data by Oosterveld and van 
Oossanen (1975). The thrust coefficient curve was approximated with the second-order 
polynomial (4.31).  The result for the Fishing Vessel 1 (ITTC Ship 2) is shown in Figure 
4.17.  The interaction between the propeller and the hull was estimated using data from 
Holtrop (1984) 

 

 
Figure 4.16 Approximation of Calm Water Resistance Curve with the Third-Order Polynomial for 

Fishing Vessel 1 (ITTC A2) 

 
Figure 4.17 Approximation of Thrust Coefficient with the Second-Order Polynomial for Fishing 

Vessel 1 (ITTC A2) 

 

 For all the sample calculations, the surging added mass acted as 10% of the mass 
of the ship.  The wave length was taken equal to the ship length while the steepness was 
taken as 1/15.  Figure 4.18 shows Melnikov’s function for the Fishing Vessel 1 (ITTC 
Ship A2). 
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Figure 4.18 Melnikov’s Function for Fishing Vessel 1 (ITTC A2) 

 The number of revolutions corresponding to the second threshold was calculated 
for each sample vessel using equation (4.51).  Figure 4.19(a) shows boundaries of surf-
riding mode (stable invariant manifold) calculated for this number of revolution (the 
sample ship is Fishing Vessel 1).  The topology of the phase plane is similar to the one 
shown in Figure 4.15(c) and corresponds to co-existence of surging and surf-riding.  
However, the shape of the curve hints that the second threshold is near, as the flexion of 
the curve becomes sharp around 35 m in Figure 4.19(a).   

 A slight change of the number of revolutions leads to a dramatic change of the 
shape of the boundary shown in Figure 4.19(b).  This is true for the second threshold (the 
calculation of the number of revolutions was performed up to the third significant digit).  
The results of these calculations for the entire sample population of ships are summarized 
in Table 4. 

\  
Figure 4.19 Stable Invariant Manifold (a) Corresponding to the Zero of Melnikov’s Function (b) 

Corresponding to the Second Threshold to the Third Significant Digit 

 

 As can be seen from Table 4, the true values of the number of revolutions, as well 
as corresponding figures for the commanded speed and nominal Froude number, are 
slightly higher that the values estimated using Melnikov’s method.  These differences are 
also shown in Figure 4.20 and Figure 4.21. 

 The difference between the results of Melnikov’s method and the direct numerical 
computation generally is small. Based on the sample population of ships, it can be 
concluded that Melnikov’s method is slightly more conservative than the direct numerical 
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method, while being much simpler and less expensive in terms of the necessary 
calculations. 

Table 4 Results of Sample Calculation for the Second Threshold 
Wave Melnikov’s Method Direct Calculations 

Ship Type 
, m h, m n 1/s  Vs, kts Fn n, 1/s Vs, kts Fn 

Fishing Vessel 2 21.56 1.44 3.31 8.54 0.302 3.32 8.56 0.303 
Fishing Vessel 1 
(ITTC A2) 

34.5 2.30 1.76 10.92 0.306 1.79 11.02 0.308 

General Cargo 1 (S60) 121.9 8.13 3.35 19.91 0.296 3.37 19.98 0.297 
RoPax 137 9.13 3.87 20.42 0.287 3.88 20.46 0.287 
Naval Combatant 1  
(ONR FL) 

150 10.00 3.24 21.09 0.283 3.24 21.11 0.283 

Naval Combatant 2 
(ONR TH) 

150 10.00 3.23 21.09 0.283 3.24 21.11 0.283 

General Cargo 2 (C4) 161.2 10.75 3.91 21.33 0.276 3.93 21.42 0.277 
Bulk Carrier 2 145 9.67 3.98 23.41 0.319 3.99 23.43 0.320 
Containership 5 (C11) 262 17.47 1.82 27.99 0.284 1.83 28.07 0.285 
Passenger Ship 276.4 18.43 3.42 28.10 0.278 3.43 28.17 0.278 
Containership 4 283.2 18.88 2.15 29.20 0.285 2.16 29.33 0.286 
LNG Carrier 267.8 17.86 2.77 30.17 0.303 2.78 30.22 0.303 
Containership 1 322.6 21.50 2.00 30.59 0.280 2.01 30.64 0.280 
Containership 3 330 22.00 2.07 32.13 0.291 2.08 32.20 0.291 
Bulk Carrier 275 18.33 3.03 32.25 0.320 3.03 32.27 0.320 
Containership 2 376 25.06 2.03 33.38 0.283 2.04 33.45 0.283 
Tanker 320 21.34 4.45 34.40 0.316 4.47 34.54 0.317 

 

 

 
Figure 4.20 Difference in Terms of Nominal Speed (kts) between the Melnikov’s Method and Direct 

Calculation for the Second Threshold 
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Figure 4.21 Difference in Terms of Nominal Froude Number between the Melnikov’s Method and 

Direct Calculation for the Second Threshold 

 

 

4.3 Level 1 Vulnerability Criteria  
 

4.3.1 Second Threshold as a Background for the Level 1 Criterion 
 

 The document MCS.1/Circ. 1228 uses the following formula as an indicator of 
possible danger of surf-riding and following broaching-to.   

 

 
180cos

8.1 L
VS , kts (4.52) 

 

Where L is length of the ship and  is a wave heading, 0 being head waves.  

 Assuming following waves ( =180°) and transforming (4.52) into the form of 
Froude number yields: 

 

3.0296.0
51444.08.1





g

Fn  (4.53) 
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 Annex 3 of the document SLF 53/INF.10 states that this value is related with the 
nominal Froude number corresponding to the second threshold.  As it can be seen from 
Table 4, values of the nominal Froude number are around 0.3.  The average Froude 
number over the considered sample population equals 0.294.  

 Generally, it is a known fact and can be seen from Table 4, that the Froude 
number corresponding to the second threshold is varying in a relatively narrow range: 
from 0.277 to 0.320.   

 At the same time, all of the calculations in Table 4 were made for a wave with the 
length equal to ship length and wave steepness of 1/15.  As the length of the ships in 
sample population varied significantly, the likelihood to encounter such a wave varies 
significantly from ship to ship.  Therefore, the sample ships were not evaluated in 
equivalent conditions.  

 Surf-riding and broaching-to is caused by steep waves.  The probability of 
encountering a long, steep wave is less than the probability of encountering a short and 
steep wave.  Therefore, accepting Fn=0.3 as an “across-the-board” criterion and standard 
may unnecessarily penalize large ships.  Thus, the size of a ship (at least its length) needs 
to be included in the criterion. 

 

4.3.2 Relation between the Second Threshold and Steepness 
 

 To account for ship size, the irregularity of waves needs to be brought into 
consideration. Then the likelihood of encountering a wave capable of causing surf-riding 
can be quantified with a probability using a known distribution of wave characteristics.  

 A reference ship is then chosen.  The reference probability of surf-riding can be 
evaluated for such a vessel.  Then, a wave steepness can be found that leads to the 
probability of surf-riding that equals the reference probability.  This will lead to the 
boundary for Froude number that depends on ship length.  

 The first step is to find the dependence of nominal Froude number corresponding 
to the second threshold on wave steepness.  The most straightforward way to do this is to 
perform a calculation of the wave surging force, estimate resistance and thrust, and then 
apply Melnikov’s method, as it was described in subsections 4.2.3 and 4.2.5.  However, 
these calculations cannot be required for the first level of vulnerability check, as they are 
too complex for the first level.  Therefore, the criterion should be based on pre-calculated 
data and approximations cannot be avoided.  

 Table 5 contains the results of the calculation of the nominal Froude number, 
corresponding to the second threshold, carried out for the sample ship population for a 
series of wave steepness.  Melnikov’s method was used.  Figure 4.22 represents a 
graphical depiction of these results. 

 As it can be clearly seen from Figure 4.22, the values of Froude number change 
almost equidistantly with the wave steepness.  Also the variation of the values of Froude 
numbers is not that significant, considering the diversity of the sample ship population. 
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Table 5 Second-Threshold Froude Number, as a Function of Wave Steepness 

Fishing Vessel 2   L=21.56 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 16.170 0.330 0.327 0.325 0.324 0.323 0.322 0.321 0.319 0.317 0.314 0.311 

1.000 21.560 0.338 0.329 0.321 0.318 0.314 0.310 0.305 0.299 0.292 0.283 0.271 

1.250 26.950 0.356 0.344 0.333 0.328 0.323 0.317 0.310 0.302 0.293 0.281 0.266 

1.500 32.340 0.377 0.361 0.348 0.343 0.337 0.330 0.322 0.313 0.301 0.288 0.270 

1.750 37.730 0.398 0.381 0.366 0.360 0.353 0.346 0.337 0.326 0.313 0.298 0.279 

2.000 43.120 0.419 0.400 0.383 0.377 0.369 0.361 0.352 0.341 0.328 0.313 0.290 

Fishing Vessel 1 (ITTC A2) L=34.500 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 25.880 0.333 0.331 0.329 0.328 0.327 0.326 0.325 0.324 0.322 0.320 0.317 

1.000 34.500 0.339 0.330 0.323 0.320 0.316 0.313 0.308 0.303 0.297 0.289 0.279 

1.250 43.130 0.358 0.346 0.336 0.332 0.327 0.322 0.316 0.310 0.302 0.293 0.282 

1.500 51.750 0.379 0.365 0.353 0.348 0.343 0.337 0.331 0.323 0.315 0.305 0.292 

1.750 60.380 0.401 0.385 0.372 0.366 0.360 0.354 0.347 0.339 0.330 0.319 0.305 

2.000 69.000 0.422 0.405 0.390 0.385 0.379 0.372 0.364 0.356 0.345 0.334 0.319 

General Cargo 1 (S60) L=121.1 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 91.440 0.329 0.326 0.324 0.323 0.322 0.320 0.319 0.317 0.315 0.312 0.308 

1.000 121.900 0.334 0.325 0.316 0.313 0.309 0.305 0.299 0.293 0.286 0.277 0.264 

1.250 152.400 0.352 0.339 0.328 0.323 0.318 0.312 0.304 0.296 0.288 0.275 0.260 

1.500 182.900 0.373 0.357 0.343 0.338 0.332 0.325 0.315 0.307 0.296 0.283 0.266 

1.750 213.400 0.394 0.376 0.360 0.354 0.347 0.340 0.331 0.319 0.308 0.296 0.276 

2.000 243.800 0.415 0.395 0.379 0.371 0.364 0.356 0.346 0.335 0.321 0.306 0.289 

RoPax    L=137 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 102.800 0.311 0.306 0.301 0.300 0.297 0.295 0.292 0.288 0.284 0.279 0.271 

1.000 137.000 0.327 0.317 0.308 0.304 0.300 0.295 0.290 0.284 0.276 0.266 0.253 

1.250 171.300 0.347 0.334 0.322 0.318 0.312 0.306 0.299 0.291 0.282 0.269 0.255 

1.500 205.500 0.369 0.353 0.340 0.334 0.328 0.321 0.313 0.304 0.293 0.281 0.263 

1.750 239.800 0.392 0.374 0.358 0.352 0.346 0.338 0.329 0.318 0.307 0.295 0.275 

2.000 274.000 0.414 0.394 0.377 0.370 0.363 0.355 0.346 0.335 0.321 0.307 0.289 

Naval Combatant 1 & 2  (ONR  FL & TH) L=150 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 112.500 0.313 0.308 0.303 0.302 0.299 0.297 0.294 0.291 0.287 0.281 0.274 

1.000 150.000 0.326 0.315 0.306 0.302 0.297 0.292 0.286 0.279 0.271 0.260 0.246 

1.250 187.500 0.345 0.330 0.317 0.312 0.306 0.300 0.292 0.283 0.271 0.258 0.240 

1.500 225.000 0.366 0.348 0.333 0.327 0.320 0.312 0.303 0.292 0.279 0.264 0.244 

1.750 262.500 0.387 0.367 0.350 0.344 0.336 0.328 0.316 0.304 0.290 0.273 0.252 

2.000 300.000 0.408 0.386 0.368 0.360 0.352 0.342 0.332 0.319 0.303 0.285 0.263 
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Table 5 Second-Threshold Froude Number, as a Function of Wave Steepness (Cont.) 

General Cargo 2 (C4) L=161.2 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 120.900 0.304 0.297 0.292 0.289 0.287 0.284 0.280 0.276 0.270 0.264 0.255 

1.000 161.200 0.321 0.310 0.300 0.296 0.292 0.286 0.279 0.272 0.264 0.254 0.239 

1.250 201.600 0.343 0.327 0.315 0.310 0.304 0.298 0.290 0.280 0.269 0.258 0.239 

1.500 241.900 0.365 0.348 0.332 0.326 0.320 0.312 0.303 0.293 0.280 0.265 0.247 

1.750 282.200 0.387 0.368 0.351 0.345 0.336 0.328 0.318 0.307 0.292 0.277 0.259 

2.000 322.500 0.409 0.388 0.370 0.363 0.354 0.344 0.334 0.322 0.308 0.289 0.273 

Bulk Carrier 2   L=145 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 108.800 0.316 0.312 0.308 0.306 0.304 0.302 0.299 0.296 0.293 0.288 0.281 

1.000 145.000 0.349 0.342 0.335 0.332 0.329 0.326 0.322 0.317 0.311 0.303 0.292 

1.250 181.300 0.362 0.350 0.340 0.336 0.331 0.325 0.319 0.311 0.302 0.289 0.274 

1.500 217.500 0.380 0.365 0.352 0.348 0.341 0.334 0.326 0.317 0.306 0.291 0.274 

1.750 253.800 0.400 0.382 0.367 0.361 0.355 0.347 0.338 0.327 0.315 0.298 0.281 

2.000 290.000 0.420 0.400 0.384 0.377 0.369 0.362 0.352 0.340 0.327 0.308 0.290 

Containership 5  (C11)  L=262 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 196.500 0.310 0.305 0.300 0.298 0.296 0.293 0.290 0.287 0.282 0.276 0.269 

1.000 262.000 0.326 0.316 0.306 0.303 0.298 0.293 0.287 0.281 0.272 0.262 0.249 

1.250 327.500 0.346 0.332 0.320 0.315 0.310 0.303 0.295 0.287 0.277 0.264 0.248 

1.500 393.000 0.368 0.351 0.337 0.331 0.325 0.318 0.309 0.298 0.287 0.274 0.255 

1.750 458.500 0.390 0.371 0.355 0.348 0.341 0.333 0.324 0.313 0.300 0.285 0.266 

2.000 524.000 0.412 0.391 0.374 0.367 0.358 0.350 0.340 0.328 0.313 0.298 0.279 

Passenger Ship     L=276.4 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 207.300 0.307 0.301 0.296 0.293 0.291 0.288 0.285 0.281 0.276 0.270 0.262 

1.000 276.400 0.322 0.311 0.301 0.297 0.293 0.287 0.281 0.274 0.266 0.255 0.241 

1.250 345.500 0.342 0.327 0.315 0.310 0.304 0.296 0.289 0.281 0.272 0.257 0.241 

1.500 414.600 0.364 0.346 0.332 0.326 0.320 0.312 0.302 0.292 0.281 0.267 0.248 

1.750 483.800 0.386 0.367 0.350 0.344 0.336 0.328 0.318 0.306 0.294 0.278 0.260 

2.000 552.900 0.408 0.387 0.369 0.361 0.353 0.344 0.334 0.322 0.307 0.292 0.274 

LNG Carrier    L=267.8 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 200.900 0.328 0.325 0.323 0.322 0.321 0.320 0.318 0.316 0.314 0.311 0.307 

1.000 267.800 0.338 0.329 0.321 0.318 0.314 0.310 0.306 0.300 0.293 0.284 0.273 

1.250 334.800 0.354 0.341 0.331 0.326 0.321 0.316 0.309 0.301 0.292 0.281 0.266 

1.500 401.800 0.374 0.359 0.346 0.340 0.335 0.328 0.321 0.312 0.301 0.289 0.272 

1.750 468.700 0.395 0.378 0.363 0.357 0.350 0.343 0.335 0.326 0.314 0.301 0.282 

2.000 535.700 0.416 0.397 0.380 0.374 0.367 0.359 0.350 0.340 0.329 0.314 0.294 
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Table 5 Second-Threshold Froude Number, as a Function of Wave Steepness (Cont.) 

Bulk Carrier 1   L=275 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 206.300 0.313 0.308 0.304 0.302 0.300 0.298 0.295 0.292 0.288 0.282 0.275 

1.000 275.000 0.349 0.342 0.336 0.333 0.330 0.326 0.322 0.317 0.311 0.303 0.292 

1.250 343.800 0.361 0.349 0.338 0.334 0.329 0.323 0.317 0.308 0.298 0.285 0.267 

1.500 412.500 0.378 0.363 0.349 0.343 0.337 0.332 0.322 0.312 0.299 0.280 0.262 

1.750 481.300 0.398 0.378 0.363 0.356 0.349 0.340 0.333 0.320 0.306 0.284 0.266 

2.000 550.000 0.417 0.395 0.378 0.371 0.363 0.353 0.345 0.332 0.316 0.291 0.272 

Containership 4   L=283.2 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 212.400 0.314 0.310 0.306 0.304 0.302 0.300 0.297 0.294 0.290 0.285 0.277 

1.000 283.200 0.327 0.317 0.308 0.304 0.300 0.295 0.289 0.282 0.274 0.265 0.250 

1.250 354.000 0.347 0.332 0.320 0.315 0.310 0.303 0.296 0.286 0.276 0.265 0.247 

1.500 424.800 0.368 0.351 0.336 0.330 0.324 0.317 0.308 0.297 0.285 0.273 0.253 

1.750 495.600 0.390 0.370 0.354 0.347 0.340 0.332 0.322 0.311 0.297 0.282 0.264 

2.000 566.400 0.411 0.390 0.372 0.365 0.357 0.347 0.337 0.326 0.312 0.294 0.277 

Tanker L=320 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 240.000 0.319 0.315 0.311 0.310 0.308 0.306 0.304 0.301 0.298 0.294 0.288 

1.000 320.000 0.346 0.339 0.332 0.329 0.326 0.323 0.318 0.313 0.307 0.300 0.289 

1.250 400.000 0.362 0.350 0.340 0.336 0.331 0.326 0.320 0.313 0.304 0.294 0.281 

1.500 480.000 0.381 0.366 0.354 0.349 0.344 0.337 0.330 0.322 0.312 0.301 0.288 

1.750 560.000 0.402 0.385 0.371 0.365 0.359 0.352 0.344 0.335 0.324 0.313 0.299 

2.000 640.000 0.422 0.404 0.389 0.382 0.376 0.368 0.360 0.350 0.339 0.326 0.311 

Containership 1 L=322.5 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 242.000 0.307 0.301 0.296 0.294 0.292 0.289 0.286 0.282 0.277 0.271 0.262 

1.000 322.600 0.323 0.312 0.303 0.299 0.294 0.289 0.283 0.276 0.267 0.256 0.243 

1.250 403.300 0.344 0.329 0.317 0.312 0.306 0.299 0.292 0.283 0.271 0.258 0.242 

1.500 483.900 0.366 0.349 0.334 0.327 0.321 0.313 0.304 0.294 0.281 0.267 0.250 

1.750 564.600 0.388 0.368 0.352 0.345 0.337 0.329 0.319 0.308 0.295 0.278 0.262 

2.000 645.200 0.409 0.388 0.370 0.363 0.355 0.346 0.334 0.323 0.309 0.290 0.270 

Containership 3  L=330 m 

Steepness/h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 247.500 0.320 0.316 0.313 0.311 0.309 0.308 0.305 0.303 0.299 0.295 0.289 

1.000 330.000 0.330 0.320 0.312 0.308 0.304 0.299 0.294 0.287 0.279 0.269 0.256 

1.250 412.500 0.349 0.335 0.324 0.318 0.313 0.307 0.300 0.291 0.281 0.268 0.255 

1.500 495.000 0.370 0.354 0.340 0.334 0.327 0.320 0.311 0.302 0.290 0.275 0.259 

1.750 577.500 0.391 0.373 0.357 0.351 0.344 0.335 0.325 0.315 0.303 0.286 0.268 

2.000 660.000 0.412 0.392 0.375 0.368 0.360 0.352 0.342 0.329 0.316 0.300 0.279 
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Table 5 Second-Threshold Froude Number, as a Function of Wave Steepness (Cont.) 

Containership 2 L=376 m 

Steepness /h 

/L m 40 30 24 22 20 18 16 14 12 10 8 

0.750 282.000 0.308 0.303 0.298 0.296 0.293 0.291 0.287 0.284 0.279 0.273 0.265 

1.000 376.000 0.325 0.315 0.305 0.301 0.297 0.292 0.286 0.279 0.271 0.259 0.246 

1.250 470.000 0.346 0.331 0.319 0.314 0.308 0.301 0.294 0.285 0.275 0.261 0.245 

1.500 564.000 0.367 0.350 0.336 0.330 0.323 0.315 0.306 0.297 0.285 0.269 0.252 

1.750 658.000 0.389 0.370 0.354 0.347 0.340 0.332 0.321 0.310 0.298 0.282 0.262 

2.000 752.000 0.410 0.389 0.372 0.365 0.357 0.348 0.338 0.324 0.311 0.295 0.273 

 

 
Figure 4.22 Second-Threshold Froude Number, as a Function of Wave Steepness 

 

 As it can be seen from Table 5, the lowest values and curves in Figure 4.22 do not 
necessarily belong to ships with known vulnerability for surf-riding and broaching-to.  
Therefore, it makes sense to use the average over the ship population for each steepness 
value rather than the lowest curve.  The average curve is approximated as 

hhhFn /0.07364/0.2324)/( 3   (4.54) 

where  is wave length and h is the wave height.  The approximate curve is plotted 
against the points in Figure 4.23. 

 For evaluation of probability, it is convenient to use the inverse function of (4.54). 
However, instead of transforming (4.54) into a cubic equation (4.53) and then solving it, 
it is easier to fit another approximation to the already inversed data: 

0.062260310.0/ 3  Fnh  (4.55) 

Note that the stiffness value is now expressed as h Points and the curve are shown in 
Figure 4.24.  
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Figure 4.23 Approximation of Froude Number, as a Function of Steepness 

 

 
Figure 4.24 Approximation of Wave Steepness as a Function of the Nominal Froude Number, 

Corresponding to the Second Threshold (Averaged over the Sample Ship Population) 

 

4.3.3 Criterion Accounting for Ship Length 
 

 The probability of encountering a wave equal to the ship length and capable of 
causing surf-riding becomes a function of Froude number 
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Here acr is critical amplitude that is determined from (4.55): 

 

0.06226)0310.0(5.0 3  FnLacr  (4.57) 
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The conditional distribution density f(a|k) can be found using formulae (3.51) and 
(3.117): 

 

)(

),(
)|(

kf

kaf
kaf   (4.58) 

 

 The formula (4.56) reflects the known fact that the increase of the speed leads to 
an increase of the probability of surf-riding.  As it can be seen from Figure 4.24, 
increasing the Froude number reduces the steepness; this leads to a decrease of the 
critical amplitude (4.57) and to an increase of range of integration in (4.56).  Since the 
conditional PDF (4.58) is always positive, the integral in (4.56) must increase with the 
increase of the Froude number. 

 To avoid any complexity unnecessary for the first level vulnerability check, 
N. Umeda proposed to limit the consideration of wave lengths to only those equal to the 
ship length.  While changing the values of the probabilities, this assumption should not 
have much effect on the final results, as here the probabilities are only used for reference.   
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Here, the probability is expressed as a function of significant wave height HS and mean 
period of zero-crossing TZ, as the conditional distribution (4.58) depends on the spectrum.  
A Bretshneider spectrum was assumed here, and it makes the reference probability 
dependent on these two parameters defining the spectrum.  

 N. Umeda also proposed to average the probability over a wave scatter diagram, 
like the one in IACS Recommendation 34.  This is a very general approach, where the 
probability of encountering a certain weather condition is also considered. 
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Here N(HS,TZ) is the number of observations of a sea state with significant wave height 
HS and mean period of zero-crossing TZ, while NTot is the total observations available.  

 Formula (4.60) expresses a probability (averaged over annual storm statistics) of 
encountering a wave that is equal to the length of the ship and capable of causing surf-
riding to a ship heading with specified Froude number.  While this value cannot be 
interpreted as the actual probability of surf-riding, it still can be used as a measure of 
danger of surf-riding, depending on speed and length.  Figure 4.25 shows a graphical 
representation of formula (4.60).   
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Figure 4.25 Probability of Encounter of a Wave Capable of Causing Surf-riding for as a Function of 

Ship Length for Different Nominal Froude Numbers 

 

 As can be seen from Figure 4.25, the probability decreases with an increase of the 
length and increases with the increase of Froude number.  The observed tendency is 
consistent with operational experience. The danger of surf-riding is less for longer ships 
and increases with increasing speed.  (For example, a ship with a length of 300 meters 
travelling at 35 knots has a Froude number of 0.332.) 

 To evaluate the reference probability, a reference ship length and Froude number 
should be assumed.  Further calculations were performed for the reference values L=80 m 
and Fn=0.28, subject for further scrutiny and additional discussions. The reference 
probability is calculated below and shown in Figure 4.25. 

  3108.727.0,80  FnLPPref  (4.61) 

 Introduction of the reference probability allows for the expression of the Froude 
number as a function of length: 

 refPPLQLFn  ,)(  (4.62) 

Here Q is an inverse function for probability (4.60).  

 Figure 4.26 presents the results of the calculation of the formula (4.62), depicted 
as circles, as well as the linear regression through these points: 

282.00.0000181)(  LLFn  (4.63) 

 The formula (4.63) relates Froude number with the ship length under the 
condition of encountering a wave with the length equal to ship length and steep enough to 
cause surf-riding.  This line has a positive slope, meaning that a larger vessel would need 
to sail with higher speed, in order to keep the same probability of encounter with 
dangerous wave.  This approach can be used to “give a credit” for larger ships, in terms 
of the likelihood of experiencing surf-riding and broaching-to. 
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Figure 4.26 Froude Number as a Function of Length, Under the Condition of the Equivalent 

Probability of Encountering a Wave Capable of Causing Surf-Riding 

 

 If one accepts Fn=0.28 as a standard for the level 1 vulnerability criterion for a 
ship with length equal or less 80 m, then the entire criterion can be formulated as: 

mLifLFn

mLifFn

80282.00.0000181

8028.0


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 (4.64) 

 The obvious disadvantage of this criterion is that it is based on an empirical 
relation between the Froude number corresponding to the second threshold and the 
steepness of wave, expressed in formulae (4.54), (4.55) and (4.57).  Because these 
formulae are based on a specific ship population, it may change if tried on another, or 
larger, population of ships.  At the same time, the difference between these ships, 
however noticeable, is not dramatic.  The advantage of this approach is that it resulted in 
a simple formula and its safety level may be related with the reference probability. 

 Alternatively, the document SLF-53/3/8 proposes an even simpler formula: 

mLifFn 2003.0   (4.65) 

 This formula (4.65) expresses the same idea that the level 1 vulnerability criteria 
for surf-riding should include ship length as one of the parameters. 

 

4.4 Level 2 Vulnerability Criteria 
 

 Similar to pure loss of stability, the phenomenon of surf-riding is a single-wave 
event. Despite the fact that the process of attraction to a surf-riding equilibrium takes 
some time, the appearance of equilibria is instantaneous. The vulnerability to surf-riding 
can be measured by the percentage of waves capable of generating surf-riding equilibria. 
The irregular seaway is modeled as a sequence of sinusoidal waves with random 
amplitude and length. The statistical weight of each wave is calculated with equation 
(3.137).  
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 While direct application of Melnikov’s method is considered to be too complex 
for the level 1 vulnerability criterion, the complexity of the the necessary calculations 
seems to be consistent with the requirements for the level 2 vulnerability criterion. 

 For each wave associated with a wave length and amplitude interval (i.e., a given 
λi and aj) associated with a wave spectrum, the speed of the ship is compared with the 
speed corresponding to the second threshold for surf-riding, calculated with Melnikov’s 
method (4.51). This comparison (using Froude number Fn) yields a factor C2ij: 
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 The weighted average of the factor C2ij over all of the values of λi and aj represent 
the criterion: 
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 Here, the criterion C2 is shown as a function of the significant wave height HS and 
the mean zero-crossing period TZ, since the distribution of wave numbers and amplitudes, 
used for the calculation of statistical weights, depends on the spectrum defined with these 
parameters. 

 The long-term version of the criterion can be formulated by averaging (4.67) over 
the values of significant wave heights and mean zero-crossing period using entries of 
scatter diagrams as weights: 
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Here, N(HS,TZ) is the number of observations of a sea state with significant wave height 
HS and mean period of zero-crossing TZ, while NTot is the total number of observations 
available.  

 

4.5 Results of Sample Calculations 
 

 Calculations were performed for the sample population of ships and are presented 
in Table 6.  The calculations included both versions of level 1 criterion (4.64) and (4.65) 
as well as the short-term version of the level 2 criterion.  The sea state used for the level 2 
criterion is characterized by the following values of significant wave height and the mean 
zero-crossing period: 

 

sTmH ZS 5.85.2   (4.69) 

 

 As it can be seen from Table 6, all the criteria produced an essentially identical 
answers.  Both the fishing vessels and the naval combatants were assessed to be 
vulnerable to surf-riding and broaching-to.   
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 Fishing Vessel 1 (Purse seiner) is known for its vulnerability to surf-riding and 
broaching-to that was confirmed in numerous model tests (Umeda, 1999, Umeda et al 
1999). Experimental data are also available for the Naval Combatant 2 (ONR 
tumblehome topside model), showing possibility of broaching-to (see Umeda, et al., 
2008; Araki, et al., 2010). 

 The sample calculations show the consistency of the criteria, the level 1 criteria 
always show vulnerability, if it was indicated by the level 2 criteria. 

 
Table 6 Sample Vulnerability Check for Surf-riding 

Level 1 (4.64) Level 1 (4.65) Level 2 (4.67) 

Sample ship L, m Fn 
Vs, 
kts Value Outcome Value Outcome Value Outcome 

Fishing Vessel 2 21.56 0.495 14 0.280 Fail 0.3 Fail 0.341 Fail 
Fishing Vessel 1  
(ITTC A2) 34.5 0.475 17 0.280 Fail 0.3 Fail 0.556 Fail 
General Cargo 1(S60) 121.9 0.268 18 0.287 Pass 0.3 Pass 0.000 Pass 

RoPax 137 0.267 19 0.290 Pass 0.3 Pass 0.000 Pass 
Bulk Carrier 2 145 0.191 14 0.291 Pass 0.3 Pass 0.000 Pass 
Naval Combatant 2 
(ONR TH) 150 0.402 30 0.292 Fail 0.3 Fail 0.203 Fail 
Naval Combatant 1  
(ONR FL) 150 0.402 30 0.292 Fail 0.3 Fail 0.203 Fail 
General Cargo 2 (C4) 161.2 0.233 18 0.294 Pass 0.3 Pass 0.000 Pass 

Containership 5 (C11) 262 0.254 25 0.312 Pass N/A Pass 0.000 Pass 
LNG Carrier 267.8 0.181 18 0.313 Pass N/A Pass 0.000 Pass 

Bulk Carrier 275 0.159 16 0.314 Pass N/A Pass 0.000 Pass 

Passenger Ship 276.4 0.247 25 0.315 Pass N/A Pass 0.000 Pass 
Containership 4 283.2 0.244 25 0.316 Pass N/A Pass 0.000 Pass 
Tanker 320. 0.129 14 0.322 Pass N/A Pass 0.000 Pass 
Containership 1 322.6 0.229 25 0.323 Pass N/A Pass 0.000 Pass 
Containership 3 330 0.226 25 0.324 Pass N/A Pass 0.000 Pass 
Containership 2 376 0.212 25 0.332 Pass N/A Pass 0.000 Pass 

 

4.6 Summary 
 

 This section describes the development of vulnerability criteria for broaching-to.  
Subsection 4.1 describes the physical background of this mode of stability failure; 
broaching-to is a violent uncontrollable turn occurring in steep stern quartering and 
following seas.  Surf-riding is the capture of a ship by a wave when it is made to move 
with the wave celerity.  The surf-riding phenomenon usually precedes broaching-to, so 
determining vulnerability for broaching-to can be performed by the evaluation of a ship’s 
propensity to surf-ride. 

 There are two characteristic speeds, or Froude numbers, which are associated with 
surf-riding– typically called thresholds. The first threshold corresponds to the situation 
when the surf-riding becomes possible at a certain location on the wave and 
instantaneous speed.   The second threshold is associated with the Froude number when 
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the surf-riding is inevitable for all possible crest locations and velocities.  The second 
threshold is used for the development of criteria. Subsection 4.2 reviews the 
mathematical apparatus necessary for this purpose and describes two methods for 
calculation of the speed, corresponding to the second threshold: direct numerical 
integration and an approximate Melnikov’s method.  

 The section 4.3 describes the development of level 1 vulnerability criteria.  As the 
calculation of the second threshold is too complex for this level, dependence of the 
Froude number corresponding to the second threshold on the wave steepness is calculated 
and approximated with a regression formula. This allows for formulation of the level 1 
criterion using the linear dependence of the Froude number on the ship length.  An 
alternative level 1 criterion is also described. 

 Subsection 4.4 is focused on the level 2 vulnerability for surf-riding.  It is also 
based on the second threshold evaluated with Melnikov’s method.  The criterion is 
formulated for irregular waves using envelope theory in a way similar to the level 2 
vulnerability criteria for pure loss of stability. 

 Sample calculations were performed for 17 ships. 
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5 Vulnerability Criteria for Dead Ship Conditions 
 

This section is focused on the vulnerability of a ship to stability failure in dead ship 
conditions.  The physical background of the phenomena is presented and the forces acting 
on a ship in dead ship conditions are briefly reviewed, including the influence of the 
freeboard on the ship dynamics in dead ship conditions.  A proposal for using modified 
weather criterion as the level 1 vulnerability criterion is examined.  An outlook for the 
level 1 and 2 vulnerability criteria is presented. 

 
 

5.1 Physical Background 

 

 The danger to the stability of a ship in rough weather, when the ship loses power, 
was understood by naval architects as early as when the sail was abandoned as a source 
of power.  Typical features of this generation of ship included a superstructure amidships, 
so the windage area was distributed approximately symmetrically.  This resulted in the 
ship being vaned or reverting to a beam seas position in the dead ship condition, 
maximizing the adverse effect of wind and waves.  

 Dead ship condition was the first mode of stability failure addressed with physics-
based severe wind-and-roll criterion, also known as the “weather criterion,” which was 
adopted by IMO in 1985 (Res. A.562(14)) and is now embodied in section 2.3 of the 
2008 IS Code, Part A.  The scenario of the weather criterion is shown in Figure 5.1. 

 This scenario assumes that a ship has lost its power and has turned into beam seas, 
where it is rolling under the action of waves as well as heeling and drifting under the 
action of wind.  Drift-related heel is a result of action of a pair of forces: wind 
aerodynamic force and hydrodynamic reaction caused by transverse motion of the ship. 

 Next a sudden and long gust of wind occurs.  The worst possible instant for this is 
when the ship is rolled at the maximum windward angle; in this case, action of wind is 
added to the action of waves.   

 The strengthening wind increases drift velocity and this leads to an increase of the 
hydrodynamic drift reaction.  The increase of the drift velocity leads to the increase of the 
hydrodynamic reaction and, therefore, to the increase of the heeling moment by the pair 
of aerodynamic and hydrodynamic forces.  

 The gust is assumed to last long enough so the ship can roll to the other side 
completely; the achieved leeward roll angle is the base of the criterion.  If it too large, or 
some openings may be flooded, the stability of the ship is considered insufficient. 
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Figure 5.1 Scenario of Stability Failure in Dead Ship Conditions 

 
 

5.2 On Dynamics of a Ship in Dead Ship Conditions  

5.2.1 Description of Forces  
 

 The physics of the stability failure in dead ship conditions is not simple.  Most 
modern ships do not have symmetrical windage area forward and aft, and as a result, such 
a ship will be located at a certain angle relative to wind and wave direction, which means 
that the consideration of motions may not be limited to just the transverse plane. 

 Even if beam seas are assumed (this is the first significant simplification), the 
problem still has be characterized by three degrees of freedom (sway/drift, heave and 
roll) and include forces of different characteristics.  A brief discussion of these forces and 
the methods to estimate them is presented below, (excluding the forces related to entrance 
of deck into water, which are considered in the next subsection). 
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 Hydrostatic and Froude-Krylov forces and moments are the result of the addition 
of normal pressures from the water onto the submerged portion of the hull.  These forces 
include changes in pressure because of the waves, but do not include changes caused by 
diffraction and radiation of waves from the moving ship.  The calculation of these types 
of forces is not difficult; well-established numerical procedures are available, although 
additional care may be necessary for large amplitude radiation and diffraction forces 
(Belknap, et al., 2010).  The problem associated with these forces is that the results, given 
for the general case Froude-Krylov forces, cannot be separated from the hydrostatic 
forces.  In terms of ship dynamics, this means that both excitation and restoring are 
expressed in one term, and, as a result, the dynamical system cannot be expressed as an 
ordinary differential equation.   

 Diffraction and radiation forces take into account the presence of a ship and its 
influence on the local pressure field.  Incoming waves are diffracting and reflecting from 
the ship’s hull, as they would from any other body in the fluid.  The ship is also moving 
and generates waves.  The ship-generated waves interfere with the incoming waves, and 
distort them.  As a result, the pressure field changes and the corresponding wave force is 
different from only the Froude-Krylov component.  The introduction of diffraction and 
radiation forces covers this difference.  The calculation of these types of forces is more 
involved, as a system of partial differential equations must be solved numerically.  
Nevertheless, because the viscosity of water does not have much of an influence for this 
scenario, the problem is still addressed within potential flow hydrodynamic theory. 
Computationally, this means that it is enough to consider the boundary rather than the 
entire volume.  Also, the value of these forces is relatively small in comparison with the 
Froude-Krylov forces. 

 Damping forces are usually attributed to the oscillatory part of motions (keeping it 
separate from the hydrodynamic reaction to drift, which is not oscillatory). The damping 
forces are the result of the dispersion of kinetic energy of oscillatory ship motions and are 
applied to all three degrees of freedom.  There are three distinct mechanisms of how the 
energy is lost.  First, the energy is taken away with the waves that the ship makes.  This 
component is calculated within the framework of potential flow hydrodynamics and it is 
dominant for heave motions. The second component is related with generating and 
shedding vortexes, while the third component is related to skin friction.  The calculation 
of these two components leads to the consideration of fluid volume, as potential flow 
hydrodynamics is no longer applicable. This takes the problem into the realm of 
Computational Fluid Dynamics (CFD), and increases the computational cost by several 
orders of magnitude.  As these components are important for roll motions, engineering 
solutions to approximate this energy loss includes the use of roll decay tests.  

 Inertial hydrodynamic forces, commonly presented as added masses, are 
calculated within the framework of potential flow hydrodynamic theory, and their 
evaluation is not difficult. 

 Aerodynamic forces also have a vortex nature.  The common way to evaluate 
these forces is by means of a model test in a wind tunnel.  This conventional way does 
not account for two circumstances that may be significant for stability assessment of dead 
ship conditions.  When the waves are large, they influence the air pressure field: in a 
trough, the waves can shield the ship from wind and decrease aerodynamic forces.  Also, 
when a ship is rolled, the decks also work as an aerodynamic surface and produce force.  
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Some experimental data has shown that deck-generated forces may exist for small angles 
as well, and that these forces may be significant (Belenky and Sevastianov 2007).  
Another possible deviation from the conventional scheme is the case of very large 
passenger vessels, where the spatial variability of the air flow may not be insignificant. 

 Hydrodynamic drift reaction forces are somewhat similar in nature to 
aerodynamic forces; generation and shedding vortices play an important role.  However, 
there is no established mature technology for measurement of these forces. Again, some 
limited experiment-based information is available from (Belenky and Sevastianov 2007). 

 

5.2.2 Influence of the Deck Entering the Water  
 

 If a ship has lower freeboard for a substantial part of its length, the forces related 
to the entrance of the deck into the water may play a significant role in the dynamics of a 
ship. A rather comprehensive review of this subject is available from Belenky and 
Sevastianov (2007), so only the key points are reported below. 

 Also, there is a difference between two situations: water on deck and deck in 
water. Water trapped on deck (without an interface of the green water with the outside 
fluid domain) acts like a moving mass when the ship rolls, while the deck-in-water 
situation (where the water on deck and outside the hull can be considered as one fluid 
domain) leads to the development of hydrodynamic forces on the deck surfaces, which 
dominates the dynamics.  These effects were known since the late 1960s, and have been 
discussed previously at IMO (IMCO STAB/INF.27, 1966) and in succeeding sessions.   

 The influence of the deck entering water leads to drastically different dynamics 
between high and low freeboard ships, under the action of a similar sudden gust of wind, 
see Figure 5.2. 

 

 
Figure 5.2 Difference in Response to a Sudden Wind Gust (Belenky and Sevastianov, 2007) 

 

t 

MA(t) 

 a) Heeling moment 

 b) Response of high freeboard ship

c) Response of low freeboard ship 

 

 

t 

t 



 

 127

 A trait of stability failure in the dead ship condition is that the forces of a different 
physical nature may dominate the dynamics, depending on geometry of the hull, as well 
as the geometry of its topside. 

 

5.3 Vulnerability Criteria for Dead Ship Conditions 

5.3.1 Level 1 Vulnerability Criterion  
 

Any type of ship may be vulnerable in a dead ship condition, as synchronous roll 
resonance and large heeling moments due to wind may cause stability failure for a 
conventional ship, as well as an unconventional ship. Vulnerability to stability failure in 
dead ship conditions is determined by the weather criterion of the current IS code. 
Therefore, it may seem logical to use the modification of current weather criterion as the 
level one vulnerability criterion as it is proposed in Annex 1 of SLF 52/INF.2 and in 
SLF 53/3. 

 On the other hand SLF 53/3/6 states that modification of the weather criterion is 
not advisable, as it was not intended to be a module criterion; it only can be used “as is.” 
The reason is that the parameters of the weather criterion were calibrated using a certain 
population of sample ships; as a result, these parameters are not independent, and may 
not be appropriate for unconventional ships. 

 The following discussion focuses on the assumptions that formed the background 
of the weather criterion and explains why modifications to it are not advisable. 

 Based on the formulation of the severe wind and rolling criteria in the 2008 Intact 
Stability Code (and its description in the explanatory notes), the roll motion can be given 
as: 

)()()()()( 44 tMtMGZMAI AFKDx     (5.1) 

Here Ix is moment of inertia, A44 is added mass in roll, MD is nonlinear roll damping, Δ is 
weight displacement, and MFK is the Froude-Krylov excitation moment, while MA is the 
wind heeling moment, including the influence of the gust. 

 It is assumed that coupling between heave and roll is small and coupling between 
sway and roll is cancelled out by not including the diffraction and radiation into the wave 
excitation – that is why the equation (5.1) only includes the Froude-Krylov component.  

 The energy balance method is used to solve the equation (5.1). The main idea is to 
re-write (5.1) in the form of the balance of energy and work for the different forces.  Re-
writing the equation of motion involves integration of the motion equation (5.1) from 
some initial state, characterized by the initial roll angle and rate, 00 ,   . See (Belenky 

and Sevastianov, 2007) for details of the derivation. 

 The integration of inertia yields the change of the kinetic energy of the dynamical 
system: 
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The work of the damping moment is expressed as 
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 A closed-form expression for (5.3) is only available when the solution and its 
derivatives are also expressed in closed-form.  However, this is not the case for the 
restoring term: 
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 The integral is the area under the GZ curve -- a traditional definition of ship 
“dynamic stability”. This quantity is known.  To express the work of Froude-Krylov 
forces, the time history of motion is required, similar to case of the work of the damping 
moment: 
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 Here, AFK is the amplitude of the Froude-Krylov forces.  The expression of the 
Froude-Krylov forces only using a sine function is already an approximation and is only 
accurate when the ship breadth is small compared to the wave length.  The introduction 
of the effective wave slope allows use of this approximation for the remainder of the 
cases.  

 The work of the aerodynamic heeling moment is expressed as: 
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Even for a constant wind heeling moment, with magnitude AMA, the time history of the 
solution is required. 

 The energy/work balance equation is expressed as: 

),(),(),(),()( 00000 ttAAPttAK EAD   (5.7) 

 Only two of the five terms of the equation (5.7) can be evaluated without having 
the full solution of the motion equation (5.1).  Therefore, a practical application of the 
energy balance method is impossible without additional assumptions.   

 To demonstrate how the energy balance method works and what the time history 
of each term looks like, consider a linear equation of roll: 

)()()( 4444 tMtMGMBAI AFKx     (5.8) 
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 Another assumption is that the transition is over and roll motions are in the steady 
state mode: 

  Wa t  sin  (5.9) 

Here, W is the static angle of heel caused by constant wind, while a is the roll amplitude 
and  is the phase shift.  

 It is obvious that steady-state solution of the linear differential equation cannot 
describe large roll motion of a ship under a sudden gust of wind.  Again, this model is 
considered only to clarify some concepts of the energy balance method.  The closed-form 
solution (5.9) allows expression of the work due to damping, wave excitation, and wind 
heeling. 

 The work of the damping moment is expressed as: 
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 The work of wave excitation contains a term very similar to work of the damping 
moment: 
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 Therefore, it makes sense to present this work as the sum of the two: the work of 
the active part of the excitation that is similar to the work of the damping moment: 
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 The other part is the synchronization (or reactive) part of the work of the 
excitation: 
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 The work of the aerodynamic heeling moments is expressed as: 
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 Expression for the change of kinetic and potential energy is trivial: 
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 The time histories of all these components of work and changes of energy are 
shown in Figure 5.3. It is clear from this figure that the energy balance equation (5.7) can 
be separated into two independent balance equations: 

   ttAttA EActD ,, 00   (5.17) 

),(),(),(),( 0000  ESyncA AAPK   (5.18) 

 This separation has a physical meaning.  As is well known, the role of periodic 
excitation is two-fold: compensation of the damping losses and synchronization, i.e. 
forcing the dynamic system to oscillate with the excitation frequency, rather than with its 
own (natural) frequency. 

 
Figure 5.3 Time Histories of Work and Energy Changes Based on the Steady-State Solution of the 

Linear Equation of Roll (Belenky and Sevastianov, 2007) 
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 This approach allows for examination of the phenomenon of the synchronous 
resonance from a different perspective.  When a linear system is in resonance conditions, 
all the work of the periodic excitation is used for the compensation of losses due to 
damping, as the excitation frequency and natural frequency are equal.  It also can be seen 
from equation (5.13) that at the resonance condition the phase shift,  equals /2; this 
makes the entire (5.13) equal to zero, so that only the active component of the excitation 
remains. 

 Then, in the case of the steady state resonance in a linear system, the balance 
equation can be re-written: 

),(),(),( 000  AAPK   (5.19) 

 Equation (5.19) is actually used in the weather criterion to find the angle of roll, 
and just the change of potential energy is defined using the area of the GZ curve. Figure 
5.4 illustrates this procedure: 
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Figure 5.4 Evaluation of the Dynamic Angle under a Sudden Gust of Wind Using the Energy Balance 

Method (Belenky and Sevastianov, 2007) 

 

The discussion above allows for summarizing the assumptions of the weather criterion: 

 The energy balance of a nonlinear system at resonance behaves the same as the 
linear system in the steady-state mode. In reality, the synchronous resonance in a 
nonlinear system is quite different, as the natural frequency depends on the 
amplitude. 

 The influence of the transition for energy balance is negligible. Even if the steady-
state mode existed prior to the sudden gust of wind, the transition starts once the 
gust is applied. 

 The hydrodynamic part of roll excitation cancels out with sway motion. This 
assumption may require long waves (in comparison with the ship size) to be 
accurate.  

 The heave has no effect on roll. This assumption may work for relatively wall-
sided ships; if the ship has a more complex geometry, the GZ curve may change 
significantly with large heave.  
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 Decks do not generate aerodynamic forces.  Belenky and Sevastianov (2007) 
report on references showing they can generate aerodynamic forces. 

 The heeling moment of drift hydrodynamic force is negligible.  Model tests 
reviewed in Belenky and Sevastianov (2007) show that it may be of the same 
order as that of the aerodynamic moment. 

 The deck never enters the water. 

 Obviously, all of these assumptions need to be valid to make the weather criterion 
practical.  Taking into account the complexity of the physics associated with motions in 
dead ship conditions, the weather criterion definitely should be considered as a marvelous 
achievement in the development of stability regulations.  

 To compensate for the inaccuracies arising from these assumptions, all the 
parameters of the weather criterion were calibrated based on calculations on hundreds of 
sample ships3. That is why it is impossible to modify the weather criterion without re-
calibrating its parameters and that is why it is so important to know the limits of 
application of the weather criterion.  

 The applicability of the current weather criterion is limited, as it was tuned to a 
certain population of ships which existed at the time of its development. Recognizing this 
fact, MSC.1/Circ.1200, “Interim guidelines for alternative assessment of the weather 
criterion,” contains a specification of the limitations of applicability of the current 
weather criterion.  In principle, the level 1 vulnerability criterion should be built around 
the applicability of the weather criterion.   

5.3.2 Level 2 Vulnerability Criteria 

 Although the current weather criterion is mandatory, if it cannot be satisfied, and 
the parameters of a ship are outside of the specified limits, then model tests can be 
applied as an alternative assessment method. This means that MSC.1/Circ.1200 can be 
considered in terms of multi-layered approach, where the limitations of the current 
weather criterion itself play a role for the vulnerability criteria for dead ship conditions, 
and the model test is the direct stability assessment method. 

 The level 2 vulnerability criterion for dead ship condition should then be focused 
on double checking if a ship really has a problem with stability, since failing the level 1 
criteria simply should mean that the weather criterion is not applicable. There are several 
factors that may need to be considered: 

 The relation between the submerged hull form and drift forces; 

 The freeboard and the interaction of the deck and water; 

 The influence of the windage distribution on the actual position in dead ship 
conditions; 

 The influence of the spatial variability of wind, including very large 
superstructures; 

 The influence of irregularity of the waves and the stochastic character of the wind. 

 
                                                 
3 According to Prof. L.K. Kobylinski, who was one of the developers of the weather criterion 
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 Of these five factors only the last one was addressed in SLF 52/INF.2; so the 
consideration of other factors still remains for the development of level 2 vulnerability 
criteria for dead ship conditions.   

 

5.4 Summary 
 

 This section focused on the vulnerability of a ship to stability failure in dead ship 
conditions.  Subsection 5.1 describes the physical background of the phenomena, 
focusing on the scenario that is assumed for the current weather criterion.  This scenario 
includes the ship’s turn to beam seas after engine failure, resulting in resonant rolling and 
the sudden action of a gust of the wind.  

 Subsection 5.2 examines the forces acting on a ship in dead ship conditions and 
briefly reviews the influence of the freeboard on the dynamics of a ship in dead ship 
conditions.  

 Subsection 5.3 looks into a proposal of using modified weather criterion as the 
level 1 vulnerability criterion.   The subsection contains the analysis of the assumptions 
of the current weather criterion and provides a justification to the statement that the 
modification of the current weather criterion is not advisable.  An outlook for the future 
development of level 1 and 2 vulnerability criteria is presented. 
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6 Framework for Direct Stability Assessment 
 

 This section contains an overview of the issues related with the direct assessment 
of dynamic stability for ships found to be vulnerable.  This section considers the most 
general problem related to the direct assessment of dynamic stability, reviews three 
methods that are being developed for dynamic stability problems, and examines specifics 
of validation of tools of direct assessment, keeping in mind the extreme rarity of stability 
failures.  
 

6.1 Formulation of the Problem 

6.1.1 Introduction 
 

 Once vulnerability to a certain mode of stability failure has been established, a 
direct assessment of dynamic stability for that mode is expected to follow, as defined in 
the framework of the new generation of intact stability criteria. 

 The objective of direct stability assessment may be seen as two-fold: as a tool for 
detailed design analysis, and for the development of ship-specific operational guidance.  
At the core of the direct assessment lies a method capable of reproducing ship motions in 
severe seas, with a fidelity that is sufficient for sound technical decision-making.  

 Considering the current state-of-the art of computational ship hydrodynamics for 
these rare problems, general direct assessment options appear to be limited to model tests 
and fast simulations. These fast simulations use potential flow wave-body hydrodynamic 
codes, and are supplemented by empirical formulations for viscous and vortex forces, 
which are based on results from model tests. Due to the necessary computational speed 
requirements, the application of other numerical methods seems to be limited for specific 
tasks. Higher-fidelity numerical methods, such as computational fluid dynamics (CFD), 
may be used to evaluate coefficients for viscous and lifting force models. Ordinary 
differential equations (ODE) may be used for extreme nonlinearity, where application of 
physics-based codes may not be practical. 

 The validation of simulation tools for direct assessment represents a challenge and 
requires special attention (Reed, 2009). There are several aspects to this problem.  First, it 
needs to be demonstrated that a tool is in fact capable of reproducing the considered 
mode of stability failure, and that the results of the simulation do not contradict the 
technical community’s accepted knowledge of the physics of the problem (an example of 
this type of demonstration can be found in Spyrou, et al., 2009).  Because the simulation 
is expected to be performed in irregular waves, it is necessary to demonstrate that the 
model used for irregular waves is valid from probabilistic point of view (i.e. its 
autocorrelation function and distribution correspond to expected values). Quantitative 
validation may include comparisons with experimental measurements of forces acting on 
the ship and trajectories and motions for a ship maneuvering in waves.  
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6.1.2 Nonlinearities and the Problem of Rarity 
 

 Failures related to a ship’s motions and loads in severe seas are characterized by 
both their rarity of occurrence and significant nonlinearity for each failure mode. Because 
of this, the accurate evaluation of the ship response in these conditions becomes difficult 
and impractical with the use of traditional “brute-force” direct assessment methods– 
Monte Carlo simulations and/or a large number of experimental realizations in the basin.  

 Assessing the dynamical response to these wave sequences constitutes the general 
problem of rarity – when the time between events is long, compared to a relative time-
scale. The problem of rarity may be solved by separating the ship response into sub-
problems, according to their time scale. For ship motions, the simplest example of an 
implementation using this approach is the piecewise-linear method for calculating 
capsizing probability (Belenky 1993; Paroka & Umeda, 2006; Paroka, et al., 2006; 
Belenky, et al., 2009). The same principle has also been applied to determine nonlinear 
response using numerical simulations (Belenky, et al., 2010). 

 For example, large roll motion response (i.e. roll near, or beyond, the maximum 
of the GZ curve) appears when a dynamical system is characterized by significantly 
nonlinear stiffness. By its nature, the point of maximum is when the oscillator behavior 
changes from an attractor to a repeller. Additionally, large roll angles are typically the 
result of specific phenomena – nonlinear excitation, which may be exhibited in the form 
of fold bifurcation. Such phenomena are not limited to roll motion. Large yaw angles 
may also be the result of fold bifurcation (Spyrou 1997), such as in the case of direct 
broaching.  

 This nonlinearity makes it difficult to use traditional techniques to determine 
values associated with rare events, such as extreme value distributions. While the theory 
of extreme distributions is still applicable, the fitting of these distributions may be 
difficult, due to the insufficiency of the available data where these nonlinearities are 
significant. This situation can be resolved with the explicit modeling of nonlinear 
phenomena, but this would require consideration of the influence of random initial 
conditions and could be influenced by the occurrence of previous nonlinear events, 
depending on the time-scale. These considerations lead to the concept of a separation 
between the nonlinear phenomena resulting in a large response and the conditions which 
lead to the occurrence of such phenomena. 

 

6.1.3 The Principle of Separation 
 

 This separation leads to a modeling of the ship response problem as a 
combination of two sub-problems: non-rare and rare. The non-rare problem is focused on 
determining the probability of occurrence of the precursor conditions which may lead to 
the nonlinear phenomena resulting in severe response, as well as determining the 
distribution of the appropriate initial conditions. The rare problem is focused on 
determining whether large responses occur for particular initial conditions.  
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 In principle, if the failure is the result of a chain of events, there may be several 
rare problems involved. For example, in broaching due to surf-riding, the occurrence of 
surf-riding is required for the broaching event to manifest itself for the given 
environmental conditions. The non-rare problem would define the conditions where surf-
riding is possible, while the rare problem represents the probability that surf-riding will 
occur, given the existence of the necessary conditions. The inception of broaching, given 
the occurrence of surf-riding (yaw repelling), is a function of the manifestation of 
instability in yaw after the occurrence of the surge equilibrium. 

 The main assumption behind the separation principle is that a mechanical system 
can be “restarted” at any moment of time, if the state variables at the instant of 
“restarting” are fully determined. For the case of a body moving in vacuum, this is an 
exact statement. However, for a ship on the free surface, this is an assumption because 
the hydrodynamic memory effect cannot be fully realized. In this sense, all of the 
necessary memory effects are contained within the initial conditions at the initialization 
of the rare problem.  

 

6.1.4 Relation with Time 
 

 A failure event is assumed to follow the assumption of Poisson flow, so that the 
probability of at least one failure during time T is expressed as: 

 TTP  exp1)(  (6.1) 

Here,  is the rate of events. The assumption of Poisson flow is only applicable if the 
failure events may be considered as independent events. By considering the rarity of a 
failure, this assumption seems to be reasonable and can be explicitly checked. The 
problem of determining the probability of a failure may be considered to be solved 
completely, if the rate of an event is found (Sevastianov 1994).  

 

6.2 Addressing the Problem of Rarity 
 

This subsection reviews three methods that are being developed for dynamic stability 
problems: the peaks-over-threshold method (using a fitted distribution of the peaks 
exceeding a fixed roll angle threshold), the split-time method (where the stability failure 
is associated with the upcrossing of a time-variant roll-angle-threshold, with roll rate 
exceeding the critical value), and the wave group method (where the ship response is 
evaluated) for a series of deterministic sequence of waves with random initial conditions. 

6.2.1 Peaks over Threshold Method 
 Statistical extrapolation, as is obvious from the term itself, is focused on the use 
of observed statistics for the prediction of the statistical characteristics of an event which 
is too rare to observe directly. In principle, extreme value theory (Gumbel 1958) allows 
one to derive a distribution of the largest value observed during a given time. However, 
these derivations require exact knowledge of the distribution of the value and are quite 
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lengthy even for a normal distribution. At the same time, formulae for the distribution of 
an extreme itself are quite simple.  Depending on the distribution of the value, it could be 
one of three extreme value distributions: Gumbel, Freschet, and Weibull. As a result, the 
practical solution is to fit one of these distribution using either experimental or simulation 
data. This approach has been used by McTaggart (2000, 2000a) and McTaggart & deKat 
(2000) to evaluate the probability of stability failure of an intact vessel. 

 The main difficulty with this approach is that collected motion data are 
statistically dominated by small motions, which may make a purely statistical prediction 
quite questionable. This difficulty can be avoided by applying the Principle of Separation. 
In terms of a statistical fit, this means that only the data above the threshold are used for 
extrapolation. The non-rare problem consists of a simple counting of the exceedances of a 
process over a given threshold. The threshold is chosen to separate regions where a linear 
solution is applicable from the regions where nonlinearity may be significant for the 
failure event of interest. The rare problem is solved by fitting an extreme value 
distribution to the data over the threshold. The method is generally known as the Peaks-
Over-Threshold (POT) method. The application of the POT method for stability failures 
is considered by Campbell and Belenky (2010). The concept of the method is illustrated 
in Figure 6.1. 

 
Figure 6.1 The Concept of the Peaks-Over-Threshold Method, (a) the General Scheme; (b) Influence 

of the Threshold 

 

 The POT method separates the solution based on a threshold. The rate of events is 
determined in the form: 

CP  (6.2) 

Here,  is exceedance rate of a threshold and PC is a conditional probability of a given 
failure if the threshold has been crossed. It can also be considered as the fraction of 
upcrossings which lead to a failure. The evaluation of the upcrossing rate is the objective 
of the non-rare problem, while the conditional probability of failure is the objective of the 
rare problem. 

 The non-rare problem is well known from the theory of stochastic processes (e.g. 
Kramer and Leadbetter, 1967). If the distribution of a stationary process and its derivative 
are known, then the upcrossing rate can be expressed as: 
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 The problem of modeling the distribution, based on the results of numerical 
simulations accounting for statistical uncertainty, is considered in Belenky and Weems 
(2008a). The non-rare-problem can be solved statistically by counting the number of 
observed upcrossings (upcrossing rate is the mean number of events per unit of time). 
Confidence intervals for the estimate can be evaluated using the binomial distribution of 
an auxiliary random variable (Campbell and Belenky, 2010, Belenky and Campbell 
2011). 

 There are two possible formulations for the rare problem: using an extreme value 
distribution, or using a statistical fit of the peaks above the threshold. The formulation for 
the rate of events using extreme value distribution (Campbell and Belenky, 2010a) is 
given as: 
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T

  (6.4) 

Here, the level m2 is associated with stability failure and TW is the observation time used 
to fit the extreme value distribution FEV. 

 It is also possible to fit a distribution using a sample of the peaks that exceed the 
threshold. In this case, the formulation becomes very similar to the split-time method: 
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 (6.5) 

Here, fPOT is a distribution fitted using the available data of peaks over the threshold and 
FPOT is the corresponding cumulative distribution function. 

 The application of the POT method is limited by relatively mild nonlinearity. 
Roughly, this means that the level m2 associated with stability failure should not exceed 
the maximum of GZ curve. The data used for the rare problem may not contain enough 
statistical information on the behavior of the system beyond that point. The range around 
the maximum of the GZ curve is characterized by severe nonlinearity, caused by the 
simultaneous influence of the attractor at upright equilibrium and the repeller at the angle 
of vanishing stability. This severe nonlinearity is manifested in a very significant 
sensitivity to initial conditions, resulting in tremendous physical uncertainty for data 
collected in this range.  

 As the intended use of the POT method is the evaluation of the probability of a 
partial stability failure, the method has been generalized to handle cases when the Poisson 
flow assumption may not be directly applicable. This includes cases with following and 
stern quartering seas, parametric roll resonance, and other cases when the response 
spectrum becomes narrow and the response itself becomes clustered. It also includes 
cases when the failure is defined as the crossing of a level on either side: port or 
starboard. As the Poisson flow requirements must be met to relate the probability of 
failure with the time of exposure, an envelope is used instead of the actual process. 
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 As the process of motions is not necessarily narrow banded, the upcrossing of a 
theoretical envelope may overestimate the rate of failures, therefore, a piecewise linear 
approximation can be used instead (see Figure 6.2). 

 
Figure 6.2 Approximation of the Envelope for a Non-Narrow Banded Process 

 

 All the calculations, including the counting of upcrossings and the fitting of 
distributions, are performed on the peak-based envelope rather than the process itself. 
This version of the POT method is known as the Envelope Peaks-Over–Threshold, or 
EPOT, method (Campbell and Belenky, 2010a, Belenky and Campbell 2011).  

 The POT/EPOT method can utilize data from numerical simulation and/or 
physical model tests, but may not be applicable to conditions with severe nonlinearity, 
such as roll angles above the maximum of the GZ curve, as it does not contain an explicit 
model of extremely nonlinear motion. 

 

6.2.2 Split-Time Method 
 
 The split-time method also separates the solution based on a threshold; however, 
the method is meant to be applicable for severe nonlinearity, up to capsize. The rate of 
events is determined by formula (6.2), while the application of the split-time method for 
the evaluation of capsizing probability is illustrated in Figure 6.3.  

 
Figure 6.3 Application of the Split-Time Method for Evaluating Capsizing Probability 
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 The formulation of the non-rare problem is identical to that of the POT method. 
The solution of the rare problem is found by a set of short simulations, which are focused 
on finding the initial conditions at upcrossing which lead to a response event of interest 
(e.g. a large roll angle or slamming event). For example, when the capsizing problem is 
considered with just one degree of freedom, the only initial condition needed is the roll 
rate at the upcrossing of the specified threshold. A value of the roll rate at upcrossing that 
exceeds the rate that leads to capsizing is the critical roll rate. Its value can be determined 
by a bisection-line method, as illustrated in the insert to Figure 6.3. Once the critical roll 
rate is determined, the conditional probability of capsizing after upcrossing is expressed 
as: 
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Here, )(uf  is the distribution of roll rate at upcrossing. It is not equal to the probability 
density function (PDF) of roll rates, as an instant of upcrossing is not just any occurrence. 
The distribution of roll rate at upcrossing can be expressed as follows (Belenky, et al., 
2008a; 2010) 
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 This method can be applied for cases of extreme nonlinearity, as it contains an 
explicit model of very large motions. The method has been generalized for problems 
related to changing stability in waves, such as pure loss of stability, by tracking the 
change of the GZ curve in time (Belenky, et al., 2009; 2010). An algorithm for these 
calculations was described by Belenky and Weems (2008) and has been implemented in 
Large Amplitude Motion Program (LAMP) ship motion simulation code (Lin and Yue 
1990; 1993). An example of the GZ curve change for the ONR Topside Series, 
tumblehome configuration (ONRTH) (Bishop, et al., 2005) is shown in Figure 6.4. 

 

 
Figure 6.4 Change of the GZ Curve in Time, ONRTH in Stern Quartering Seas, Sea State 7, Speed 
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 The random changes of the GZ curve in irregular waves result in the necessity of 
modeling the threshold roll angle as a stochastic process. In principle, this does not 
change the general scheme of application of the split-time method (see Figure 6.5). The 
critical roll rate also becomes a stochastic process. To express the probability of capsizing 
in this case, three stochastic processes must be introduced: 

)()()(;)()()(;)()()( 0 tttxtttytttx mcrmm    (6.8) 

Here, m(t) is the changing threshold, while m0 is a position of the threshold in calm 
water. The process x(t) shows the distance to the moving thresholds, the process )(tx  is 
its derivative, and the process y(t) is the difference between the instantaneous and critical 
roll rate. Then, the rate of capsizing can be expressed as: 
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Here, fu(y) is a distribution of process y(t), at an instant when the process x(t) upcrosses 
the threshold. It has been shown (Belenky, et al., 2009) that this distribution can be 
expressed as: 
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In this case, the capsizing event is considered as an upcrossing through the time-
dependent threshold, where the instantaneous roll rate exceeds the critical roll rate (see 
Figure 6.6).  

 

 
Figure 6.5 Application of Split-Time Method for the Case of Changing Stability in Waves 
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Figure 6.6 Definition of Capsizing With Critical Roll Rate 

 The testing of the concept of the split-time method with changing stability has 
been performed with a piecewise linear system, where the decreasing part of stiffness was 
random.  A special formulation of a piecewise linear term for stiffness allows for the 
derivation of a closed form solution. The convergence of statistics to the theoretical 
solution has been demonstrated (Belenky, et al., 2009). 

 It may be possible to extend the split time method for surf-riding by considering a 
spatial phase portrait described by Spyrou (1996) as a frozen frame in time. A similar 
approach was used by Vishnubhota et al., (2000) for the definition of invariant manifolds 
for irregular waves. 

 In principle, the split-time method can be used with numerical simulations and/or 
model test data. The solution of the non-rare problem does not encounter any significant 
difficulties, although the experimental implementation of the rare problem may be 
challenging, as it requires full control of initial conditions. Some additional discussion on 
this topic occurs later in this section. 

 

6.2.3 Method of Wave Groups 

 The wave group method separates the problem differently: the first part 
corresponds to ordinary oscillatory response of small amplitude; while the second 
represents the extreme behavior produced by the encounter of the wave group. The key 
concept associated with this method is to extract all those sequences of waves (“wave 
groups”) that result in unacceptably large dynamic response with random (but near the 
upright state) initial conditions. 
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 The occurrence and characteristics of wave groups has been studied extensively in 
oceanography (for a brief review see Bassler et al., 2008; 2010).  From the oceanographic 
point of view, there are two principal approaches to define wave groups: the envelope 
theory of Longuett-Higgins (1957); and the use of a Markov chain representation based 
on Kimura (1980).  The formulations typically consider wave events that occur above a 
given threshold.  However, from the ship response perspective, the important 
characteristics are different from those used typically in an oceanographic context.  Here, 
both the amplitude and duration of the wave events must be considered.  A definition of 
this wave sequence, or wave group, from the ship response perspective is proposed in 
Bassler et al. (2010a); this is briefly discussed below and illustrated in Figure 6.7 

 
Figure 6.7 Definition of Wave Groups from the Ship Dynamics Perspective: Wave Events Must 

Occur Far Enough Apart in Time, So That the Autocorrelation Function of Ship Response 
Effectively Decays. 

 

 Groups of large waves, as well as single large waves, can be reproduced 
deterministically in an experimental basin (e.g. Davis and Zarnick 1964, Clauss 2000, 
Bassler et al., 2008; 2009).  Different aspects related to the application of assessing the 
response to wave groups and single large waves were discussed by Blocki (1980), Tikka 
and Paulling (1990), Boukhanovsky and Degrtyarev (1996), and Alford, et al. (2007).  
The first complete implementation of this type of approach with quantitative results was 
proposed during the SAFEDOR project (Spyrou and Themelis 2005; Themelis and 
Spyrou 2007; 2008).  Similar approaches were followed more recently by Umeda et al. 
(2007) and Bassler et al. (2010, 2010a). 

 Intrinsic to Kimura’s approach is the non-zero correlation between consecutive 
waves. This is accommodated by means of a correlation coefficient, h, between 
successive wave heights that, in turn, determines the mean group length, j .  

 A first order autoregressive model could be used for modeling the process of 
successive waves. As it’s known, an autoregressive representation of a variable Y at time 
t depends on certain instants of its past, plus a random variable. For an autoregressive 
process of order r: 

)()(..)1()( 1 trtYntYntY r   (6.11) 

where n1,.., nr are weights that can be related with correlation coefficients and (t) is a 
zero mean Gaussian white noise process. A first-order autoregression process has the 
Markov chain property, meaning that the value of Y(t) is completely determined by the 
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knowledge of Y(t-1). Kimura had proposed the bivariate Rayleigh distribution as the joint 
PDF of successive wave heights H1 and H2 that depends on a correlation parameter  ; 
that in turn is a function of the correlation coefficient h mentioned earlier (see Kimura 
1980, and also Themelis and Spyrou 2008 for more details). The probability of a 
sequence of high waves using the conditional probability that a wave height exceeds the 
threshold level Hcr, given that the previous wave also exceeds Hcr is computed from the 
following joint PDF: 
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The probability that a wave group has a run length, j, is then: 

1
2222 )1()(  jppjp  (6.13) 

 In Kimura’s theory, group properties are not derived from the spectrum but they 
come from the parameter h, whose calculation is based on a series of wave heights. To 
improve Kimura’s theory on this, Battjes and Van Vledder (1984) introduced a new 
correlation parameter s, determined from a spectrum: 
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where 202 2 mmTm   is the average period between zero–upcrossings. Then a new 

correlation coefficient, s, can be produced. The parameter s is, in reality, the correlation 
coefficient between points of the wave envelope function, (t), separated by a constant 
time interval, Tm2. Therefore, the correlation coefficient between discrete waves is 
replaced (with certain assumptions that, in a strict sense, could only be satisfied in the 
limit of narrow spectra) by the correlation coefficient between points of the wave 
envelope. Stansell, et al. (2002) proposed calculating the correlation parameter, s, not 
only for the mean zero upcrossing period, Tm2, but also for Tm/2 and 3Tm/2, thus putting 
forward an improved (averaged) correlation coefficient.  

 An alternative viewpoint to modeling the wave group is discussed below: A 
failure can be caused by a single wave, or by a wave group, each resulting in different 
dynamical response characteristics for the ship.  Therefore, the rate of failures could be 
expressed as a combination of both types of excitation events: 

FESSFEGG PP   (6.15) 

Here, G is the rate of encounter for a wave group, and S is the rate of encounter for a 
single wave.  PFEG is the probability of failure if a wave group is encountered and PFES is 
the probability of failure if a single wave is encountered.   

 The use of equation (6.1) for relating the probability of failure with the time of 
exposure implies the independence of encounters with either a wave group or single wave 
event.  This leads to the definition in equation (6.15) of a wave group or a single wave, as 
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shown in Figure 6.7.  In this case, from the ship dynamics perspective, all three waves in 
the first group must be considered as one excitation sequence event, or wave group event, 
while all six waves in the second group are considered as another event.  

 In order to use Poisson flow for modeling the relation with time, one may 
consider the response to a wave group encounter as a single random event; then the 
response to the current wave group should be independent from the response to the 
previous group.  As a result, there should be enough time between these groups for the 
autocorrelation function of the response to effectively die out.  Therefore, large waves 
that are close to each other in sequence could be considered as part of the same sequence, 
or group, even if they are intermittently separated by a few small waves. This approach is 
somewhat different from the mainstream wave group approach in the literature. 

 Two values are needed for this definition from the ship dynamics perspective: the 
threshold, a, and the time duration, t.  Both of these values can be linked to ship-specific 
properties and enable ship-specific formulation of the characteristics of the wave 
sequence (or wave group) of interest.  The threshold is defined as the amplitude of the 
excitation that leads to a significantly nonlinear response.  One way to define this 
amplitude for roll motion is to use the roll response curve, see Figure 6.8a, where a/v is 
the ratio of the amplitude of response and the angle of vanishing stability.  For this 
motion, significant nonlinearity can be characterized as the theoretical possibility of fold 
bifurcation; this requires the existence of at least one point on the response curve where 
the tangent is vertical.  The smallest amplitude of excitation, α1, which results in the 
appearance of such a point, can be used to determine the amplitude of wave steepness and 
to define the threshold.  It may be observed that this threshold also corresponds to the 
onset of nonlinearity in the ship-specific roll stiffness (GZ curve). 

 The interval between the wave events, groups of large waves, or single large wave 
can be evaluated using the autocorrelation function, R(), of the linear or linearized 
response,  from the non-rare problem, see Figure 6.8b.  The use of the linear or linearized 
response is fully justified, as the large amplitude response is only expected as a result of a 
single or small group of large waves.  As a result, a linear, or linearized, model can be 
used to determine the response between the excitation events of interest. The same 
method is also a source of data for initial condition at the instant of group encounter. 

 

 
Figure 6.8 The Definition of Wave Groups: (a) Determining the Threshold and (b) Time Duration 
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 The non-rare problem is simply evaluating the response of the linear, or 
linearized, system in the frequency domain.  This produces the autocorrelation function 
that is used for defining the wave groups and characterizes the initial conditions for an 
encounter with the wave group or a single large wave.  The rare problem consists of 
evaluating the response of a nonlinear dynamical system to a deterministic group of 
waves or to a single large deterministic wave.  The initial conditions of the dynamical 
system at the moment of encounter with the wave event are random and have a normal 
distribution.  The variance and mean, if any, are known from the non-rare problem. 

 Bassler, et al. (2010) described statistical testing of the concept using simulated 
wave elevation data.  It was shown that a random event of encountering a wave group 
and a single large wave follows Poisson flow, as the time between these events has an 
exponential distribution, see Figure 6.9a.  A method to estimate rates of encounter for a 
group and a single wave was also proposed.  This can be performed using the distribution 
of the number of waves in a group, or the probability mass function (pmf), where the first 
bin corresponds to the single large wave events (see Figure 6.9b). 

 A series of wave parameter distributions were also studied, including amplitude, 
period, and steepness of the first, second, and third waves in a group.  These data may be 
useful to help formulate a model of a wave group based on ship-specific characteristics 
with consideration of the different dynamical response mechanisms associated with 
single wave and multiple wave encounters. 

 The wave group method can be applied to model tests and/or numerical 
simulations.  Using either technique, the probability of failure due to encounter, PFEG and 
PFES, as given in equation (6.15), can be determined.  However, because of the 
formulation of the principle of separation in this method, precise control of initial 
conditions is necessary.  This is the subject of ongoing work. For numerical simulations, 
one realization for each set of initial conditions can be used to determine the probability 
of failure due to the deterministic wave sequence.  For model tests, because of inherent 
experimental uncertainties, a set of runs for each initial condition can be used to 
determine the probability of failure.  The number of necessary experimental realizations 
is determined by the precision of the control of initial conditions that is possible in a 
basin with deterministic wave generation capability. 

 
Figure 6.9 Distribution of the Time Duration Between Groups (a), and the Number of Waves in a 
Group (b); Statistics Estimated Based on 200 Simulated Records of Wave Elevation, 30 min Each; 

Threshold was a = 5 m, Time Between Groups Δt = 50 s 
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6.3 Specifics of Validation of Solution of the Problem of Rarity 

6.3.1 General 
 

 The validation of numerical tools intended to characterize rare events is more than 
just a challenging task. Some considerations of how the principle of separation can be 
used to assist with this task are discussed below. However, the practical implementation 
of these ideas remains the subject of future work.  

 Reed (2009) reviewed different aspects related to the validation of simulation 
tools in context with two related processes: verification and accreditation. As emphasized 
by Reed, bifurcation analysis is important as it allows a demonstration that the theoretical 
basis of a simulation tool correctly reproduces the qualitative behavior of the nonlinear 
dynamical system. Quantitative validation may include comparisons with experimental 
measurements of the forces acting on ship and the resulting motions, including 
trajectories for maneuvering in steep waves.  

 The validation of simulation tools for large motions in irregular waves presents 
significant additional challenges related to the stochastic nature of the processes and the 
rarity of events, and also the problems related with nonlinear behaviors. An application of 
the principle of separation can simplify the required validation by allowing separate 
validation of the non-rare and rare problems. 

 

6.3.2 Validation of Wave Model 
 

 Initial consideration is given to the validation of the wave model. The usual 
procedure is to compare spectra for the environmental conditions of interest. However, 
this may be insufficient for the simulation of rare events. 

 The wave model used in a simulation tool must provide a reasonable 
representation of the statistical characteristics of real waves, taking into account 
unavoidable uncertainties caused by the finite volume of experimental and simulated 
sample data. The first issue is related to the reliable comparison of two variance 
estimates, while both of them are random numbers.  

 A comparison of the distribution of wave elevation with the theoretical normal 
distribution may also prove useful. Because a wave-maker is also a nonlinear system, it 
may disturb the normality of the distribution. If an experiment is carried out in natural 
(irregular) waves, such as in a large-scale or full-scale environment) the normality of the 
distribution can be disturbed by influences due to current, the shoreline, bottom effects, 
etc.  If this is the case, the expectations for the accuracy of validation may need to be 
adjusted. 

 Because the interest is in simulation of the nonlinear ship response, consideration 
of the wave effects on the instantaneously submerged portion of the hull is necessary. 
Particularly for large, steep waves, the fluid pressures and orbital velocities below the 
free-surface may vary significantly, and not be adequately captured by lower-order 
models (Minnick, et al., 2011a). The wave model used in the simulation must have 
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sufficient accuracy to represent the fluid behavior for the wave conditions of interest. 
Although difficult, model experiments may be performed to determine the velocity-field 
characteristics for these types of events (Minnick, et al. 2010; 2011; 2011a) and then used 
to validate the selected wave model. 

 Another aspect to be addressed is the stationarity of experimental wave data. 
While it is not considered to be a problem for an experiment in a controlled environment, 
the stationarity of natural waves in large-scale testing may be an issue. A metric used to 
assess the degree of stationarity in these conditions could be very useful for validation. 
One possible metric could be the use of the “run test” to evaluate the duration of 
stationarity, as discussed by Bendat and Piersol (2010).  

 If wave elevations are determined with the traditional inverse Fourier transform of 
the wave spectrum, the resulting time history is valid as a model of a stochastic process 
for a limited time. This time depends on the number of frequencies considered in the 
model. In the case of an insufficient number of frequencies, the restored time history of 
wave elevations may suffer from self-repeating effects (Belenky and Sevastianov, 2007). 
The presence of the self-repeating effect can be revealed by calculation of the 
autocorrelation function, using the cosine Fourier transform from the given spectrum, 
with an accepted frequency set. 

 

6.3.3 Validation of Non-Rare Solutions 
 

 Validation of the solution for the non-rare problem has a mostly statistical 
character and may be different for each method. 

 The split-time method was originally developed to evaluate the probability of 
capsizing. However, it can be used to calculate the probability of partial stability failure 
(e.g. a large roll or yaw angle) as well. The threshold used in this method is fairly high, 
relative to the degree of nonlinearity of the system, and is a random value. The threshold 
is located on randomly changing GZ curve and therefore, depends on the method used to 
calculate the GZ curve in waves.  

 A direct validation of the calculated GZ curve in waves may not be simple. 
However, several key points can be checked experimentally. In one key stability 
condition of interest, a ship model travels with the wave celerity, close to the wave crest. 
The position of the ship model relative to the wave crest can be estimated from a video 
record. The model has an asymmetric load and, therefore, is heeled. The angle of heel 
depends on the instantaneous righting arm in waves and can be compared with calculated 
value. Such an experiment could also reveal how much influence the local waterplane 
distortion has on the stability in waves and how accurate quasi-static calculations of the 
instantaneous GZ curve (Belenky and Weems, 2008) really are. 

 Nevertheless, it may be possible to compare experimental and numerical solutions 
of the non-rare problem using a so-called “equivalent” threshold. This threshold is 
defined as follows: the same number of upcrossings of roll motion through an equivalent 
threshold exists as the roll process has through the random threshold. Then the rate of 
upcrossing through the equivalent threshold can be compared with experimental data. A 
similar approach may be taken towards the distribution of roll rates at upcrossing. 
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 Another aspect of the validation of the non-rare solution is the direct comparison 
of the statistical characteristics of motions between an experiment and numerical 
simulation. As the threshold is relatively high, the motion response may be influenced by 
nonlinearity, including practical non-ergodicity (Belenky and Sevastianov, 2007). The 
effect of practical non-ergodicity may be observed as the increased difference between 
the statistical characteristics of different records belonging to the same ensemble. It is 
desirable to quantify the effect of non-ergodicity, as it is unrealistic to expect that the 
difference between the experiment and simulation can be smaller than the one caused by 
practical non-ergodicity. 

 In contrast to the split-time method, the non-rare solution of the peaks-over-
threshold method is expected to be within the linear range. However, the tail of the 
distribution remains above the threshold. Therefore, the distribution of motions is, in fact, 
truncated. This must be accounted for when making a comparison of the variance 
estimate of the motion. The expected accuracy of the statistical estimate below the 
threshold is higher than the estimates of the whole process. The same can be observed 
about the distributions – a comparison of the distribution of values below the threshold is 
expected to yield a more definitive answer since the influence on nonlinearity and the 
associated uncertainties are minimal. The distribution of both motions and velocities are 
expected to be close to normal. 

 In the case of the POT method, the distribution of the peak-based envelope values 
is expected to be close to Rayleigh. In the case of a narrow banded process, the 
derivatives of a peak-based envelope are expected to be close to normal.  In both cases, 
the statistical comparison of the estimates of upcrossing rates is meant to be a very 
important validation parameter. 

 In principle, the validation of the non-rare problem for the wave group method is 
similar to the peaks-over-threshold. The difference is that the threshold is defined in 
terms of excitation, rather than the motion displacement. For this method, the distribution 
of motion and its derivative at upcrossing of the excitation process are the focus for 
validation. 

 

6.3.4 Validation of Rare Solutions 
 

 To validate the solution of the rare problem in the split-time method, one should 
demonstrate that a ship capsizes if a critical roll rate is exceeded. As it is very difficult to 
control initial roll rate, it may be attempted backwards by checking the roll rate at the 
instant of threshold crossing for a time-series where capsizing was actually observed. 
This experiment can be done in steep regular waves, where observing capsizing is not so 
difficult, and the instantaneous waterline is relatively easy to estimate– reducing the 
uncertainty of the calculations of the GZ curve in waves and the critical roll rate. 

 Validation of the rare solution for the POT method appears to be rather straight 
forward. Two distributions of peaks (or envelope peaks) above the threshold can be 
compared using the Pierson chi-square goodness-of-fit test. Additionally, statistical 
frequencies which exceed a certain level above the threshold can be compared. A 
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significant difference between them can be evaluated to determine if such a difference is 
caused by random factors. 

 Validation of the rare solution for the wave group method has two components. 
First, it must be demonstrated that the proposed model of wave groups is a true 
representation, supported by statistical data from the realistic seaway conditions of 
interest. Second, the numerical response of a ship being excited by the wave group agrees 
well with the behavior obtained with experimental realizations of the deterministic wave 
group. This can be achieved by direct comparison with experimental results in a basin 
capable of reproducing deterministic wave groups (Bassler, et al., 2008; 2009). However, 
as mentioned previously, the precise control of initial conditions is an essential 
component to this experimental validation and is currently being pursued. 

 

6.4 Summary 
 

 This section contains an overview of the issues related with the direct assessment 
of dynamic stability for ship found to be vulnerable.   

 Subsection 6.1 considers the most general problem related to the direct 
assessment of dynamic stability. Failures related to large ship responses (motions and/or 
loads) in waves are rare, and large-amplitude ship motions are significantly influenced by 
the nonlinearity of the dynamical system. The necessity of modeling these significant 
nonlinearities results in only one option for simulation – the Monte-Carlo method in the 
time-domain, while the rarity of occurrence of the failure events makes direct “brute-
force” approaches computationally cost prohibitive. The principle of separation seems to 
provide an alternative to overcome this difficulty. The concept is to consider, separately, 
the nonlinear phenomena resulting in a large response and the conditions which result in 
the occurrence of such phenomena. This can be achieved by introducing an intermediate 
threshold, the crossing of which is frequent enough to be observable. The probabilistic 
characteristics of the conditions leading to a failure are considered at the instant of the 
crossing of the threshold. As a result, the problem is separated into two sub-problems: 
non-rare (crossing of the threshold) and rare (evaluation of conditions at the threshold 
which result in a failure).  

 Subsection 6.2 reviews three methods that are being developed for dynamic 
stability problems: the peaks-over-threshold method (using a fitted distribution of the 
peaks exceeding a fixed roll angle threshold), the split-time method (where the stability 
failure is associated with the upcrossing of a time-variant roll-angle-threshold, with roll 
rate exceeding the critical value), and the wave group method (where the ship response is 
evaluated) for a series of deterministic sequence of waves with random initial conditions. 

 Subsection 6.3 examines specifics of validation of tools of direct assessment 
keeping in mind extreme rarity of stability failures.  It is shown that the principle of 
separation is also applicable for validation.  The advantage of applying the principle of 
separation is the ability to perform validation separately for the non-rare and rare sub-
problems.  This separation allows both the physical and statistical uncertainty to be 
reduced, while also providing a robust validation technique for nonlinear phenomena. 
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7 Sample Ship Population 
 

 A sample population of 17 ships was used for testing and evaluation of 
vulnerability criteria for three of the identified intact stability failure modes (pure loss of 
stability, parametric roll, and surf-riding).  The general characteristics of these ships are 
given in Table 7. 

 
Table 7 Ship Types and General Characteristics 

Type Note L (m) L/B B/d D/d 

Bulk Carrier  275 5.85 2.67 1.36 

Bulk Carrier 2  145 6.34 2.21 1.45 

Containership 1 Post-panamax 322.6 7.07 3.05 1.65 

Containership 2 Post-panamax 376 6.53 3.57 2.36 

Containership 3 Post-panamax 330 7.24 3.55 2.26 

Containership 4 Panamax 283.2 8.80 2.51 1.70 

Containership 5 Post panamax C11-type 262 6.55 3.12 1.93 

Fishing Vessel 1 Japanese purse seiner –ITTC Ship A2 34.5 4.53 2.87 1.16 

Fishing Vessel 2  21.56 3.40 2.53 1.21 

General Cargo 1 Series 60 CB=0.7 (S60) 121.9 7.50 2.51 1.60 

General Cargo 2  C-4 type 161.2 7.05 2.73 1.61 

LNG Carrier  267.8 6.39 3.57 2.29 

Naval Combatant 1 ONR topside series –flared (FL) 150 8.19 3.42 3.09 

Naval Combatant 2  ONR topside series –tumblehome  (TH) 150 8.19 3.42 3.09 

Passenger Ship  276.4 8.04 4.03 1.75 

RoPax  137 6.76 3.64 3.24 

Tanker  320 5.52 2.76 1.48 

 

 Twelve of these ships were previously considered in Peters, et al. (2010) for the 
assessment of stability failures related to righting lever variation (levels 1 and 2 pure loss 
and parametric roll). Histograms of the distribution of the ratio of different hull form 
parameters (length-to-beam, beam-to-draft, depth-to-draft) for this sample ship 
population are given in Figure 7.1, Figure 7.2 and Figure 7.3.  

 Containership 5 is the C11-class containership. General Cargo Ship 1 is Series 60 
hull form, CB=0.7 variant (Todd, 1953). General Cargo Ship 2 is the C4 type, similar to 
the one used in Paulling, et al. (1972). Naval Combatants 1 and 2 are the ONR Topsides 
Series, flared and tumblehome configurations, respectively (Bishop, et al., 2005). The 
RoPax is a notional vessel, similar to the one from a reported stability accident (MNZ, 
2007). Fishing Vessel 1 is the ITTC Ship A2 (a Japanese purse seiner type hull form).  
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Figure 7.1 Length to Beam Ratio Distribution for the Population of 17 Sample Ships 

 

 
Figure 7.2 Beam to Draft Ratio Distribution for the Population of 17 Sample Ships 

 

 
Figure 7.3 Depth to Draft Ratio Distribution for the Population of 17 Sample Ships 
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8 Conclusions 
 

 The main objectives of this project were to develop vulnerability criteria, test 
them, and prepare initial information on methods for direct stability assessment.  The 
following summarizes the achievements and gives a brief outlook on future work. 

 The level 1 vulnerability criteria for parametric roll is built upon the transition 
solution of Mathieu equation. The proposed criteria consist of two conditions. The first 
condition examines if a ship is capable of achieving speeds that provide dangerous 
frequencies of encounter, while the second condition examines if the magnitude of 
stability changes may result in an increase in roll angle during a certain number of cycles. 

 The level 2 vulnerability criterion for parametric roll is based on numerical 
integration of roll equation using instantaneous GM or GZ. The mathematical model used 
is more sophisticated, in order to avoid possible excessive conservatism.  The method 
accounts for irregular waves by limiting the number of waves, using a typical wave group 
with properties of a specified sea state. The criteria also includes the influence of heave 
and pitch (through attitude of the wave), and the nonlinearity of the GZ curve. 

 The level 1 vulnerability criterion for pure loss of stability is based on geometric 
characteristics of the hull, as these parameters reflect how significantly the waterline may 
change during a wave pass and therefore, are also related with possible stability 
deterioration of a ship on the wave crest. 

 The level 2 vulnerability criteria for pure loss of stability consist of two 
conditions. The first one is based on the average time that the ship’s GM spends below 
the critical level during the wave pass. Specification of the critical level is also discussed.  
The second criterion is based on the likelihood of appearance of very large loll angles 
during the wave pass.  Both criteria are based on the envelope presentation of irregular 
waves. A sea state is presented as a population of regular waves associated with a 
statistical weight, calculated with appropriate probability distributions. 

 Two alternative proposals for the level 1 vulnerability criteria for surf-riding are 
considered, but both of them are based on the second speed threshold– above this 
threshold surf-riding is inevitable in regular waves.  Since the calculation of the second 
threshold is too complex for this level, the dependence of the Froude number 
corresponding to the second threshold on the wave steepness is calculated and 
approximated with a regression formula. This allows formulating the level 1 criterion as 
the linear dependence of the Froude number on the ship length.  An alternative level 1 
criterion is based on the same idea of the dependence on length; it simply limits the 
length of vulnerable ships to a value of 200 m. 

 The level 2 vulnerability criterion for surf-riding is also based on the second 
threshold, which is evaluated with Melnikov’s method.  The criterion is formulated for 
irregular waves using envelope theory, in a way similar to the level 2 vulnerability 
criteria for pure loss of stability. 

 All six of the vulnerability criteria were tested on the sample population of 17 
ships including 5 container carriers, 2 fishing vessels, 2 bulk carriers, 2 general cargo 
vessels, 2 naval vessels, a passenger RoPax ferry, a passenger cruise vessel, an LNG 
carrier, and a tanker.  Several of those ships had known vulnerability to parametric roll, 
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pure loss of stability, or surf-riding / broaching-to.  The essence of the testing was to see 
if the proposed criteria would be able to distinguish ships with known vulnerabilities 
from ships that are known to be safe from the particular mode of stability failure.  All of 
the proposed criteria were tested successfully.  Also, all of the proposed criteria were 
consistent between the levels.  In other words, if a ship fails the level 2 criterion, it 
always fails the level 1 criterion.  

 The modified weather criterion was considered as a candidate for the level 1 
vulnerability criterion for dead ship conditions. An analysis of the assumptions of the 
weather criterion was carried out.  However, due to the complex physical nature of ship 
response in dead ship conditions, the parameters of the current weather criterion 
underwent significant calibration. This was done using a certain population of ships, 
which was typical at the time of the development of current weather criterion.  As a 
result, the modification of the current weather criterion may have limited applicability, 
and is not advisable.  

 The report also includes an overview of the methods for direct stability 
assessment.  These are methods of numerical simulation of model testing that are capable 
of addressing the extreme rarity of stability failures, without incurring impractical 
expenses.  It was shown that the application of the principle of separation allows for a 
practical solution.  

 Three methods which are being developed for dynamic stability problems were 
reviewed: the peaks-over-threshold method (using a fitted distribution of the peaks 
exceeding a fixed roll angle threshold), the split-time method (where the stability failure 
is associated with the upcrossing of a time-variant roll-angle-threshold, with roll rate 
exceeding the critical value) and the wave group method (where the ship response is 
evaluated for a series of deterministic sequence of waves with random initial conditions). 

 The problems related to validation of these methods and tools are very 
challenging.  However, it was shown that the principle of separation is also applicable for 
validation.  The advantage of applying the principle of separation is the ability to perform 
validation separately for both the non-rare and rare sub-problems. This separation allows 
both the physical and statistical uncertainty to be reduced, while also providing a robust 
validation technique for nonlinear phenomena. 
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