U.S. SUPPLEMENT TO

ABS RULES FOR BUILDING AND CLASSING OFFSHORE SUPPORT VESSELS FOR VESSELS CERTIFICATED FOR INTERNATIONAL VOYAGES

1 August 2017

AMERICAN BUREAU OF SHIPPING

USCG Approval: 03 August 2017
MISSION STATEMENT

The mission of ABS is to serve the public interest as well as the needs of our members and clients by promoting the security of life and property and preserving the natural environment.

HEALTH, SAFETY, QUALITY & ENVIRONMENTAL POLICY

We will respond to the needs of our members, clients and the public by delivering quality service in support of our mission that provides for the safety of life and property and the preservation of the marine environment.

We are committed to continually improving the effectiveness of our health, safety, quality and environmental (HSQE) performance and management system with the goal of preventing injury, ill health and pollution.

We will comply with all applicable legal requirements as well as any additional requirements ABS subscribes to which relate to HSQE aspects, objectives and targets.
CONTENTS

ABS MISSION STATEMENT
QUALITY & ENVIRONMENTAL POLICY

INTRODUCTION

SECTIONS

I. SUPPLEMENTAL REQUIREMENTS TO 2017 ABS RULES FOR BUILDING AND CLASSING OSVs

II. SOLAS INTERPRETATIONS NOT ADDRESSED BY ABS RULES

III. ADDITIONAL REQUIREMENTS NOT CONTAINED IN ABS RULES, MARPOL OR SOLAS

IV. REQUIREMENTS FOR OFFSHORE SUPPLY VESSELS (OSVs) CERTIFICATED UNDER 46 CFR SUBCHAPTER L

V. REQUIREMENTS FOR OFFSHORE SUPPLY VESSELS (OSVs) CERTIFICATED UNDER 46 CFR SUBCHAPTER L AND AT LEAST 6,000 GT ITC

VI. GUIDANCE AND REFERENCES

VII. RECORD OF REVISIONS
INTRODUCTION

Those who use this Supplement are asked to review the current ABS Rules for Building and Classing Offshore Support Vessels, and most recent editions of SOLAS (2014) and MARPOL (2011) or latest. Please be aware of the “Scope and Conditions of Classification.” This Supplement does not change the scope or conditions of ABS Classification. It is a reference document within the ABS Quality System.

Historically, as part of their regulatory reform initiative, the United States Coast Guard (USCG) established a task group consisting of USCG personnel and ABS Engineers to conduct a comparison of the applicable requirements contained within Title 46 of the Code of Federal Regulations (CFR) Subchapters “D” and “I” to the similar applicable regulations contained in 1974 SOLAS (as amended), the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) and the ABS Rules for Building and Classing Steel Vessels. The purpose of this effort was to identify redundancies and to determine if the International Conventions and ABS Class Rules would provide an equivalent level of safety to those regulations contained within 46 CFR Subchapters “D” and “I”. Over 370 separate regulations were examined, and it was determined that many of the CFR requirements were satisfied by either the ABS Rules alone, 1974 SOLAS (as amended) alone, MARPOL 73/78 alone, or a combination of all three of these regulations.

The results of the task group’s study were codified into a document, subsequently modified to include Subchapter “H”, titled “U.S. Supplement to ABS Rules for Steel Vessels for Vessels on International Voyages, dated 1 August 1997.” This supplement has been periodically updated; the most recent version was issued 01 April 2011.

In August 1994 the USCG delegated authority to ABS under a Pilot Program, as defined in USCG Navigation and Vessel Inspection Circular No. 2-95 (NVIC 2-95), to survey ABS-Classed vessels for compliance with the following statutory instruments:

- The International Convention for the Safety of Life at Sea, 1974 (as amended); and
- The International Convention for the Prevention of Pollution from Ships 73/78.

The Pilot Program was completed on 31 July 1997, and NVIC 2-95 was reissued on 1 August 1997 as NVIC 2-95, Change-1. Incorporated in Change 1 was the USCG delegation of authority for ABS to review plans and conduct surveys on behalf of the USCG for vessels enrolled in the Alternate Compliance Program (ACP).

Under ACP, a voluntary program, the owner may elect to have ABS conduct surveys on existing vessels on behalf of the USCG. For new construction, a request is required from both the shipyard and the owner since enrollment in this program will affect both parties.

The success of the ACP for steel vessel led to industry requests to expand the program to vessels classed under the ABS Rules for Building and Classing Offshore Support Vessels (OSVs). To meet this demand, ABS issued and obtained USCG Approval for this supplement applicable to OSVs enrolled in the USCG’s ACP and classed by ABS. The procedures for enrollment in the ACP are addressed on Page 4 of this Introduction.
The controlling documents pertaining to vessels enrolled in ACP are 1974 SOLAS, as amended, MARPOL 73/78, as amended, NVIC 2-95, Change-2 (dated 5 May 2006), Volume II, Section B Chapter 9 of the USCG Marine Safety Manual, the ABS Rules for Building and Classing Offshore Support Vessels and this Supplement.

A vessel enrolled in the ACP must satisfy all the requirements contained in the applicable sections of the International Conventions, ABS Rules and the U.S. Supplement, prior to the issuance of the Certificate of Inspection (COI).

The Supplement is divided into seven (7) sections.

Section I contains supplemental requirements in areas where there exist ABS Rule cites for which the USCG has additional requirements. For ease of reference, each of these cites is identified by the corresponding ABS Rule number. If a Rule cite does not apply to the vessel under consideration, then the associated supplement requirement does not apply.

Section II contains the interpretations of 1974 SOLAS (as amended) from the U.S. Administration for those areas in which the USCG has amplifying or additional requirements. For ease of reference, each of these cites is identified by the corresponding SOLAS cite. If a SOLAS cite is not applicable to the vessel under consideration, then the associated interpretation does not apply.

Section III contains supplemental requirements in areas not contained in the ABS Rules, MARPOL or SOLAS for which the USCG has requirements. If a cite is not applicable to the vessel under consideration, then the associated requirement does not apply.

Section IV contains different and additional requirements in areas not contained in the ABS Rules, MARPOL or SOLAS for which the USCG has requirements for certification as an OSV. For ease of reference, each of these cites is identified by subject area title and an arbitrarily assigned paragraph identifier. If a cite is not applicable to the vessel under consideration, then the associated requirement does not apply.

Section V contains different and additional requirements in areas not contained in the ABS Rules, MARPOL or SOLAS for which the USCG has requirements for certification as an OSV of at least 6,000 GT ITC. For ease of reference, each of these cites is identified by subject area title and an arbitrarily assigned paragraph identifier.

Section VI is supplementary and may be used for any vessel to which Sections I-V apply.

Section VII contains the record of revisions.

There are specific cites within this document where U.S. domestic standards are specified as mandatory for certain systems, equipment or components. U.S. Federal law is one of the reasons why many items are mandatory. It is recognized that alternative standards developed by regulatory bodies and industry, both internal and external to the United States, exist which would define systems, equipment or components that are equivalent to those being specified herein. To the extent authorized by NVIC 2-95, Change-2, as amended and supplemented, ABS may
evaluate alternatives built to such standards and forward comments and recommendations to the USCG Marine Safety Center (MSC) for final approval. Under no circumstances is ABS authorized to endorse or issue a USCG COI, exempt international convention requirements, or approve equivalencies to SOLAS or other international conventions.

In the normal course of technological advancement and application, it is entirely possible that new systems, equipment or components will be available for use onboard vessels covered by this program. In the event that existing design requirements are not applicable, it is incumbent on the owner, builder or his designer to seek from ABS as early as possible a determination by the MSC of the requirements that will be applied.
PROcedures for Enrollment and Participation in ACP

46 CFR Chapter I, Part 8, Vessel Inspection Alternatives; COMDTINST 16000.7B, USCG Marine Safety Manual, Volume II, Section G, Chapter 6, Procedures Applicable to Other Vessels Engaged in OCS Activities and NVIC 2-95, Change-2 describe the process for enrollment in ACP. The above documents may be accessed using the following links:

46 CFR Link: https://www.ecfr.gov/cgi-bin/ECFR?page=browse (Select Title 46 – Shipping, Browse Parts 1-40, Select Part 8.)

Marine Safety Manual Volume II, Section G, Chapter 6, Item A:
https://media.defense.gov/2017/Mar/29/2001723817/-1/-1/0/CIM_16000_7B.PDF

New Construction

During new construction the design, fabrication sequences, and construction cost may be affected by the intended enrollment of a proposed new construction in ACP by the owner. Therefore, it is imperative that the shipyard and owner consult with ABS as early in the design phase as possible to discuss the proposed enrollment in depth and to establish the basic fundamentals and administrative clarifications. Upon the completion of such a meeting, both the shipyard and the owner are to forward a written request to ABS to confirm their intentions. For the shipyard, this could be accomplished in concert with the forwarding of the ABS Request for Classification Survey Details (Form A.B.122). For survey purposes, the owner is to forward a separate letter to the local ABS Office or Regional Office (Divisional Assistant Chief Surveyor, ABS Americas) to confirm their intention regarding the enrollment of the vessel. While this will assist in the proper processing within ABS, it is very important to note that the application for enrollment in ACP should be forwarded to the USCG in accordance with NVIC 2-95, Change-2.

Existing Vessels

With existing vessels, the owner or operator applies for enrollment by submitting an Application for Inspection of U.S. Vessel (Form CG-3752) to the Officer in Charge, Marine Inspections (OCMI), indicating their desire to have their vessel participate in the ACP. The USCG will subsequently authorize the ABS Program Manager (Divisional Assistant Chief Surveyor, ABS Americas) and the local ABS Survey Office to commence the process. A “Hand Over Survey,” discussed later in this text, will be scheduled at a mutually convenient time. Upon completion of this Survey, the owner/operator will receive official notification from the USCG indicating the enrollment status.

Re-Flagging

For vessels intending to re-flag to U.S. Flag, it is envisioned that:

1. For existing vessels intended to be certificated under the U.S. flag for the first time, the Supplement will apply in a similar manner to other vessels but with additional requirements or changes.
2. NVIC 10-81 Change-1 is the guiding document for re-flagging.
3. The USCG accepted Vessel Deficiency Report or “Gap Analysis” augments the definition of the standards applied to the specific vessel.
HOW TO WITHDRAW
In order to withdraw from ACP, the owner is to advise the USCG in writing. If this is agreeable to the USCG, all data applicable to the vessel during the time period the vessel was enrolled in the program will be forwarded to the USCG for incorporation into the USCG computer files. Upon completion of the information transfer, the owner would then continue the required inspections directly under the jurisdiction of the USCG.

HAND OVER SURVEY
For all vessels, a “Hand Over Survey” must take place. The mandatory annual surveys for the SOLAS Cargo Ship Safety Construction Certificate, Safety Equipment Certificate and the MARPOL Certificates are conducted at this time, along with any surveys required for certificates due for renewal or annual classification surveys. The USCG will confirm that the history of the vessel has been properly entered into the ABS Status System. Then the ABS Surveyors and USCG Marine Inspectors will agree on the resolution of any CG-835s and outstanding requirements. At this time, the USCG will confirm to ABS that the vessel is in compliance with applicable federal regulations or advise on those areas that must be corrected. The ABS Surveyor and the USCG Marine Inspector will then complete the ABS Record of Safety Equipment. This record will ensure that the requirements of the USCG continue. The Record of Safety Equipment is to be a permanent part of the vessel’s documents.

WHAT HAPPENS WITH THE CERTIFICATE OF INSPECTION?
An ACP vessel will still have a COI. However, it will be distinctively different in that it will not contain details of life-saving appliances and fire-extinguishing equipment. The ABS Status will contain the major details of the vessel.

WHAT HAPPENS IF THE VESSEL IS DAMAGED?
It is the responsibility of the vessel’s Master to report a marine casualty or accident, as defined in 46 CFR 4.03 to the cognizant USCG OCMI. ABS takes the lead in assessing the material condition of the affected vessel, proposing repairs and determining “Fitness to Proceed” and is obliged to share this with the local OCMI. If the vessel poses a pollution threat to the environment or poses a hazard to the safety of a U.S. navigable waterway such as a Class I structural failure, the local OCMI will have final authority to review and approve repairs. This decision must be coordinated with the ABS Surveyor in Charge.

REPORTABLE CASUALTY
A marine casualty or accident means a casualty or accident involving any vessel within the navigable waters of the U.S., its territories or possessions, or any casualty or accident involving a U.S. Flag vessel anywhere in the world. This definition of marine casualty or accident does not pertain to public vessels. The situations requiring reporting are contained in 46 CFR 4.05-1. Immediately after addressing all resultant safety concerns, the owner, agent, master, operator, or person in charge, shall notify the nearest OCMI whenever a vessel is involved in a marine casualty as described in 46 CFR 4.05-1.

In addition to the above notification to the USCG, the owner, agent, master, operator or person in charge shall notify the nearest ABS office of any damages, failures, deterioration or repairs to hull, machinery or equipment, which affects or may affect classification or certification, and request an ABS Surveyor to attend the vessel at the first opportunity.
HOW TO HANDLE FORM CG-835
The USCG may issue deficiencies on form CG-835 in conjunction with its inspections when there is no ABS surveyor onboard or available to attend in which case the ABS Surveyor would normally issue the deficiency. When the USCG Marine Inspector issues the CG-835, the original will be provided to the vessel’s Master or authorized representative and the USCG Marine Inspector will make a copy available to the local ABS office. The local ABS surveyor will enter the USCG deficiency into the ABS vessel’s survey status as an outstanding recommendation when it affects class and statutory certificates, or as a deficiency when it affects only the statutory certificates. The OCMI may accept a report of an ABS surveyor as proof of completion of an outstanding CG-835. The ABS Surveyor will specifically report on clearing of any CG-835 recommendations/deficiencies in a narrative report and forward one copy of the report to the local OCMI to allow USCG records to be updated. Without the written consent of the OCMI, ABS Surveyors cannot extend or modify recommendations/deficiencies that were initially reported on Form CG-835 by USCG Marine Inspectors.

NO SAIL ITEMS
This is a term normally used by the USCG when the condition of a vessel is suspect, has deteriorated, or has sustained excessive damages such that there is a direct and immediate threat to the vessel’s crew, the safety of navigation or the marine environment. ABS has the same concerns, however, the ABS terminology differs. ABS defines no sail items in various sections of the ABS Process Instructions. ABS does not use the term “Seaworthy.” The term used in ABS is “Fitness to Proceed.” A vessel is not considered “Fit to Proceed” if it has suffered structural damage that affects the longitudinal strength of the vessel or its watertight integrity. It also applies if the vessel has lost propulsion, steering or electrical generation capacity, including redundant systems.

Any of the foregoing would generate a report of noncompliance with the ABS Rules and be listed as an “Outstanding Recommendation.” Conversely, if the problem lies with SOLAS or MARPOL items, it would be listed as a “Deficiency.” Examples of deficiencies that would prevent a vessel from sailing are: (1) Loss of life-saving appliances such as lifeboats; (2) Lack of life-saving appliances; or (3) Failure of critical parts of the fire-extinguishing system. Examples of “No Sail” items are inoperable fire pumps or depleted fixed fire-extinguishing systems. On occasion, an item that is a deficiency will also be an outstanding recommendation against Class. The emergency fire pump is such an item. A suitable emergency fire pump is required for both the Class and SOLAS Safety Equipment Certificates to be issued and/or remain valid.

OUTSTANDING RECOMMENDATIONS (OSR)
This is the term used by ABS to define areas of noncompliance with the Rules. Classification is maintained by a series of Annual Surveys and Periodical Surveys that allow the Class Society an opportunity to survey a vessel and maintain a record of its compliance with the Rules. It also allows ABS to confirm that the owner is maintaining the vessel in a satisfactory condition. A single Outstanding Recommendation may not necessarily affect the Class of the vessel. Consideration is given to allow time to make corrections or to reach a more appropriate port. A number of Outstanding Recommendations or a major Outstanding Recommendation may be sufficient to question the “fitness of the vessel to proceed.”

WHAT HAPPENS IF THE SPECIAL SURVEYS MUST BE EXTENDED?
ACP survey extensions must be processed through the Survey Manager, ABS Americas. The maximum survey extension will be three months and shall not alter the baseline date for the survey concerned. Except for the Special Surveys, all other surveys have windows of time in which they are to be completed. A series of letters are sent to the owner advising of due dates and overdue dates. Provided there are no special circumstances to consider, the Class of the vessel is in jeopardy and will be canceled 90 days after the due date.

DRYDOCKING EXTENSIONS
Regardless of the circumstances, the USCG retains the ultimate authority for granting drydocking extensions of 90 days or more to ACP vessels. Under exceptional circumstances, ABS allows extensions of drydockings. The vessel must have no record of a grounding since the last drydocking, and a Survey must be conducted. For a 30-day extension, a general examination of the vessel is conducted. For extensions of 31 days up to 90 days, a modified Under Water Survey In Lieu of Drydocking (UWILD) is required. In the modified survey, a record of the examination is made on photographs. The diver has a free swim of the bottom. Extensions of 90 days up to one year are normally done to allow the vessel’s surveys to be harmonized with IMO requirements, but must be approved by the USCG. A one-year extension requires a full UWILD, including two-way voice and video communications between the Surveyor and the diver. It would be considered unusual to do a one-year extension under any other circumstances.

UNDER WATER SURVEY IN LIEU OF DRYDOCKING
An ACP UWILD guide was developed for vessels enrolled in ACP. Guidance for Underwater Surveys In Lieu of Drydocking for vessels enrolled in the Alternate Compliance Program is included in NVIC 2-95, Change 2, Enclosure (3), which also refers to NVIC 01-89.

OVERSIGHT
The USCG retains responsibility to ensure vessels meet regulatory requirements and maintains an active and viable oversight of ABS. ABS’s World Wide ISO 9001:2000 Certified Quality System can aid in this oversight. As with any successful quality system, it is a smoothly functioning in-service process verification scheme. It provides a source of continuous and timely opinion related to the effectiveness of the processes in place to meet customer requirements. An added benefit is the information it provides to both clients and management to prove that controlled work is being accomplished. It provides a framework that can be used in the USCG oversight program for delegated responsibilities.

Oversight will consist of internal and external audits of ABS by the USCG. It will also consist of annual boardings of the vessels to verify continued compliance with the issued certificates. The boardings will be similar to those done in Port State Inspections. A check sheet describing the considerations to expand the boardings is a part of the USCG Marine Safety Manual, Volume II, Section B Chapter 9. USCG oversight activities also include periodic oversight reexaminations, attendance at dockings, new construction visits, attendance at UWILD surveys, evaluation of plan review activities and attendance at ISM Code audits.
I. SUPPLEMENTAL REQUIREMENTS TO 2017 ABS RULES FOR BUILDING AND CLASSING OSVS

<table>
<thead>
<tr>
<th>Cite:</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-5/1 (SVR)</td>
<td>Other Regulations – General</td>
<td>I-1</td>
</tr>
<tr>
<td>3-3-1/3.1</td>
<td>Intact Stability</td>
<td>I-1</td>
</tr>
<tr>
<td>3-3-1/3.3</td>
<td>Subdivision and Damage Stability</td>
<td>I-1</td>
</tr>
<tr>
<td>4-3-4/13</td>
<td>Steering Gears – Control Systems</td>
<td>I-1</td>
</tr>
<tr>
<td>4-3-4/15</td>
<td>Steering Gears – Instrumentation</td>
<td>I-1</td>
</tr>
<tr>
<td>4-3-5/1.3.2</td>
<td>Dynamic Positioning Systems Notations and ABS Guide for Dynamic Positioning Systems</td>
<td>I-2</td>
</tr>
<tr>
<td>4-4-1/1</td>
<td>Pressure Vessels and Fired Equipment - General</td>
<td>I-2</td>
</tr>
<tr>
<td>4-6-2/5.11</td>
<td>Piping Systems – Metallic Piping – Valves</td>
<td>I-3</td>
</tr>
<tr>
<td>4-6-3</td>
<td>Piping Systems – Plastic Piping</td>
<td>I-3</td>
</tr>
<tr>
<td>4-6-4/13.13</td>
<td>Special Provisions for Fuel Oil with Flashpoint Below 60oC But Not Less Than 43oC</td>
<td>I-3</td>
</tr>
<tr>
<td>4-7-3/1</td>
<td>Fire Safety Systems – Fire-extinguishing Systems and Equipment – Fire Main Systems</td>
<td>I-3</td>
</tr>
<tr>
<td>4-7-3/3.3</td>
<td>Fire Safety Systems – Fire-extinguishing Systems and Equipment – CO₂ Systems</td>
<td>I-3</td>
</tr>
<tr>
<td>4-8-2/3.11</td>
<td>Electrical Systems – System Design – System Arrangement</td>
<td>I-4</td>
</tr>
<tr>
<td>4-8-2/5.13 & 5.17</td>
<td>Electrical Systems – System Design – Emergency Switchboard & Use of Emergency Generator in Port</td>
<td>I-4</td>
</tr>
<tr>
<td>4-8-2/5.19</td>
<td>Electrical Systems – System Design – Alarms and Safeguards for Emergency Diesel Engines</td>
<td>I-4</td>
</tr>
<tr>
<td>4-8-2/7.1 & 7.7</td>
<td>Electrical Systems – System Design – General & Cable Sizing</td>
<td>I-5</td>
</tr>
</tbody>
</table>

Cite: 4-8-2/11.3 Electrical Systems – System Design – Navigation Light System I-5

Cite: 4-8-2/11.5.1 & 11.5.5 Electrical Systems – System Design – Interior Communication Systems – General & Power Supply I-6

Cite: 4-8-2/11.5.2 Electrical Systems – System Design – Engine Order Telegraph I-6

Cite: 4-8-2/11.5.3 Electrical Systems – Interior Communication Systems – Voice Communication I-7

Cite: 4-8-3/5.5.4 Electrical Systems – Electrical Equipment – Main and Emergency Switchboards – Instrumentation I-7

Cite: 4-8-3/9.1 Electrical Systems – Electrical Equipment – Cables – Standard of Compliance I-8

Cite: 4-8-3/13 Electrical Systems – Electrical Equipment – Certified Safe Equipment & Certified Safe Equipment in Hazardous Areas I-8

Cite: 4-8-4/21.1.5 Electrical Systems – Shipboard Installation and Tests – Paint on Cables I-8

Cite: 4-9-1/7 Remote Propulsion Control and Automation – General Provisions – Plans and Data I-8

Cite: 4-9-2/11.3 Remote Propulsion Control and Automation – Remote Propulsion Control – Application & System Requirements I-10

Cite: 4-9-2/13 Remote Propulsion Control and Automation – Remote Propulsion Control – Control on Navigation Bridge I-10

Cite: 4-9-5/1 Remote Propulsion Control and Automation – ACC Notation – Application I-11

Cite: 4-9-5/3 Remote Propulsion Control and Automation – ACC Notation – System Requirements I-11

Cite: 4-9-5/9 Remote Propulsion Control and Automation – ACC Notation – Monitoring in Centralized Control Station I-11

Cite: 4-9-5/15.5.1 Remote Propulsion Control and Automation – ACC Notation – Propulsion Machinery Space – Fire Detection and Alarm Systems I-11
Cite: 4-9-5/15.5.2 Remote Propulsion Control and Automation – ACC Notation – Propulsion Machinery Space – Fire Main System I-11
I. SUPPLEMENTAL REQUIREMENTS TO 2017 ABS RULES FOR BUILDING AND CLASSING OSVS

Cite: 1-1-5/1 Other Regulations – General
(SVR)

Cargo Gear is to be certified in accordance with the ABS Guide for Certification of Lifting Appliances, 2015 for the type of cargo gear being provided.

As an alternative, evidence of approval by the International Cargo Gear Bureau may be submitted.

Cite: 3-3-1/3.1 Intact Stability

Intact stability for OSVs and Oceanographic research vessels is to comply with the applicable parts of Subchapter S. It has been determined that IMO Resolution MSC.267 (85), “International Code on Intact Stability, 2008” (2008 IS Code) is equivalent to the intact stability requirements of Subchapter S. Where the intact stability requirements contained in IMO Resolution MSC.267 (85) are used, the Regulations contained in 46 CFR 173 Subpart B, Lifting, Subpart D, Oceanographic Research, and Subpart E, Towing, of Subchapter S are also to be satisfied, where applicable. All recommendations that appear in the 2008 IS Code on Intact Stability are required and considered mandatory.

Cite: 3-3-1/3.3 Subdivision and Damage Stability

Relative to damage stability, please note that all dry cargo vessels over 80 meters (262.5 ft) in length shall comply with the probabilistic damage stability regulations in SOLAS, 1974, as amended, Chapter II-1. This is also applicable to the vessels that change flag to U.S., regardless of the actual build date.

Cite: 4-3-4/13 Steering Gears – Control Systems

The main steering gear is to be provided with full follow-up control in the pilothouse. Follow-up control means closed-loop (feedback) control that relates the position of the helm to a specific rudder angle by transmitting the helm-angle order to the power actuating system and, by means of feedback, automatically stopping the rudder when the angle selected by the helm is reached.

Cite: 4-3-4/15 Steering Gears – Instrumentation

This requirement applies to each vessel of 1600 gross tons and over that has power driven main or auxiliary steering gear. The steering failure alarm system must be independent of each steering gear control system, except for the input received from the steering wheel shaft.

The steering failure alarm system must have audible and visible alarms in the pilothouse when the actual position of the rudder differs by more than 5° from the rudder position ordered by the follow-up control systems for more than:

(a) 30 seconds for ordered rudder position changes of 70°,
(b) 6.5 seconds for ordered rudder position changes of 5°, and

(c) The time period calculated by the following formula for ordered rudder position changes between 5° and 70°:

\[t = \left(\frac{R}{2.76} \right) + 4.64 \]

Where:
- \(t \) = maximum time delay in seconds
- \(R \) = ordered rudder change in degrees (°)

Each steering failure alarm system must be supplied by a circuit that is independent of other steering gear systems and steering alarm circuits.

Cite: 4-3-5/ 1.3.2 Dynamic Positioning Systems Notations & ABS Guide for Dynamic Positioning Systems

In addition to the requirements of the ABS Guide for Dynamic Positioning Systems, the DP-2 or DP-3 FMEA and Proving Trials should comply with the guidance provided in USCG MTN 2-11 to the greatest extent possible.

Cite: 4-4-1/1 Pressure Vessels and Fired Equipment – General

Boilers, pressure vessels and fired equipment are to comply with the requirements specified in 4-4-1 of the 2017 ABS Rules for the Building and Classing of Offshore Support Vessels or the ASME Code. Boilers, pressure vessels and fired equipment manufactured to any other standard will be considered on a case-by-case basis in coordination with the Marine Safety Center (MSC).
Cite: 4-6-2/5.11 Piping Systems – Metallic Piping – Valves

Valves employing resilient materials and installed at the following locations must meet the requirements for a Category A valve:

(a) Vital piping system manifolds; and

(b) Closure for any opening in the shell of the vessel.

Cite: 4-6-3 Piping Systems – Plastic Piping

Pipes and piping components made of thermoplastic or thermosetting plastic materials, with or without reinforcement, are to conform to IMO Res. A.753(18). Piping required to meet flame, fire endurance, and/or smoke generation/toxicity requirements of A.753(18) must be USCG type approved. In lieu of meeting the smoke and toxicity requirements of A.753(18), plastic pipe located in concealed areas of an accommodation, control or service space must meet one of the following:

(1) The trunk or duct containing the plastic pipe must be surrounded by an “A” class division; or

(2) the concealed space containing the pipe must be fitted with approved smoke detection and penetrations of a bulkhead or deck and each draft stop installation shall maintain integrity of the fire divisions.

Cite: 4-6-4/13.13 Special Provisions for Fuel Oil with Flashpoint Below 60°C but not less than 43°C

For OSVs of less than 6,000 GT ITC.

(1) Except as provided in paragraph (2) below, each internal combustion engine installed on an OSV of less than 6,000 GT ITC, whether for main propulsion or for auxiliaries, must be driven by a fuel having a flashpoint of not lower than 43°C (110°F) as determined by ASTM D 93.

(2) The use of a fuel with a flashpoint of lower than 43°C (110°F) must be specifically approved by the Commandant (CG–ENG), except in an engine for a gasoline-powered rescue boat.

Cite: 4-7-3/1 Fire Safety Systems – Fire-extinguishing Systems and Equipment – Fire Main Systems

Fire mains may not be used for anything other than fire, deck wash or tank cleaning services unless specific provisions are included in the system design which ensure that system availability and performance requirements to fight shipboard fires are not compromised.

All distribution valves in the fire main system shall be distinctly marked to indicate the compartments or parts of the vessel to which they lead.

Material selection for piping and components shall be in accordance with 46 CFR 56.60 or ASTM F1155. Brass or bronze materials may be used in accordance with these standards.

USCG acceptable category “A” valves may be used in fire main systems.
CO₂ systems, installed or altered after July 9, 2013, protecting spaces containing more than 6,000 cubic feet will require lockout valves. The lockout valves must be locked in the “off” position during maintenance or testing of a CO₂ system, to prevent its accidental discharge during those times of heightened risk to personnel.

All new CO₂ systems, installed or altered after July 9, 2013 will need odorizers. In the event of a discharge, the odorizer will inject a wintergreen scent that will linger as long as harmful amounts of the discharged gas are present, to alert personnel to the presence of CO₂.

Time for starting and connection to the main switchboard must be both not more than 30 seconds and less than the time to start and connect the emergency generator to the emergency switchboard.

A stop control for an emergency generator must only be in the space that has the emergency generator, except a remote mechanical reach rod is permitted for the fuel oil shutoff valve to an independent fuel oil tank located in the space.

Each bus-tie between a main switchboard and an emergency switchboard must be arranged to prevent parallel operation of the emergency power source with any other source of electric power, except for interlock systems for momentary transfer of loads.

If there is a reduction of potential of the normal source by 15% to 40%, the final emergency power source must start automatically without load. When the potential of the final emergency source reaches 85% to 95% of normal value, the emergency loads must transfer automatically to the final emergency power source. When the potential from the normal source has been restored, the emergency loads must be manually or automatically transferred to the normal source, and the final emergency power source must be manually or automatically stopped.

The emergency generator may not be used during lay time in port, unless approved by the Marine Safety Center.

Three means of shutdowns are required: low L.O. Pressure, Overspeed and upon release of the Fixed Fire-Extinguishing System in the Emergency generator room.
MCC and Lighting cables are not permitted a decrease in size if interlocks are employed.

(a) AC Steering Gear motors. The steering gear feeder must be provided with instantaneous trip protection (no overload protection allowed)

Each navigation light must meet the following:

(a) Meet the technical details of the applicable navigation rules.

(b) Be certified by an independent laboratory to the requirements of UL 1104 or an equivalent standard.

(c) Be labeled with a label stating the following:

1. “MEETS _______________” (Insert the identification name or number of the standard under paragraph (b) above to which the light was tested.)

2. “TESTED BY _______________” (Insert the name or registered certification mark of the independent laboratory that tested the fixture to the standard under paragraph (b) above.)

3. Manufacturer’s name.

4. Model number.

5. Visibility of the light in nautical miles.

6. Date on which the fixture was Type Tested.

7. Identification of the bulb used in the compliance test.
Means of communications are to be provided between the navigation bridge and the engineer officer's accommodation for vessels with minimally attended or periodically unattended machinery spaces.

The voice communication system power supply must ensure sufficient redundancy and capacity to be considered able to operate independent of the vessel's electrical system in which the loss of any one system component will not disable the rest of the system.

Hand held radios are not an acceptable substitute for the sound powered telephones or other means of communication.

On a vessel with more than one propulsion engine, each engine must have an engine order telegraph. On a double-ended vessel that has two navigating bridges, this system must be between the engine room and each navigating bridge.

On vessels equipped with pilothouse control, each local control station in the engine room must have an indicator if the local control station is not immediately adjacent to the engine room control station.

Engine order telegraph and remote propulsion control systems must be electrically separate and independent, except that a single mechanical operator control device with separate transmitters and connections for each system may be used.

Each vessel with navigating bridge throttle control must have a positive mechanical stop on each telegraph transmitter that prevents movement to the “Navigating Bridge Control” position without positive action by the operator.

Electric Engine Order Telegraph System

Where two or more transmitters, located on or on top of, or on the wings of, the navigating bridge operate a common indicator in the engine room, all transmitter handles and pointers must operate in synchronism or operate under the control of a transmitter transfer control as described below. Where the transmitters are mechanically interlocked to effect synchronous operation, a failure of a wire or chain at any transmitter must not interrupt or disable any other transmitter.

- **Transmitter Transfer Control System**: Except for a transmitter in an unattended navigating bridge on a double-ended vessel, each transmitter must operate under the control of a transmitter transfer control so that movement of any one transmitter handle automatically connects that transmitter electrically to the engine room indicator and simultaneously disconnects electrically all other transmitters. The reply pointers of all transmitters must operate in synchronism at all times.
On a double-ended vessel that has two navigating bridges, a manually operated transfer switch which will disconnect the system in the unattended navigating bridge must be provided. Each electric engine order telegraph system must have transmitters and indicators that are electrically connected to each other.

Each engine room indicator must be capable of acknowledgment of orders.

Each system must have an alarm on the navigating bridge that automatically sounds and visually signals a loss of power to the system. The alarm is to be provided with means to reduce the audible signal from 100% to not less than 50%.

Mechanical Engine Order Telegraph System

Each mechanical engine order telegraph system must consist of transmitters and indicators mechanically connected to each other.

Each transmitter and each indicator must have an audible signal device to indicate, in the case of an indicator, the receipt of an order, and in the case of a transmitter, the acknowledgment of an order. The audible signal device must not be dependent upon any source of power for operation other than that of the movement of the transmitter or indicator handle.

If more than one transmitter operates a common indicator in the engine room, all transmitters must be mechanically interlocked and operate in synchronism. Where the transmitters are mechanically interlocked to effect synchronous operation, a failure of a wire or chain at any transmitter must not interrupt or disable any other transmitter.

Cite: 4-8-2/11.5.3 Electrical Systems – Interior Communication Systems – Voice Communication

A sound-powered telephone system or other reliable voice communication method must be installed that is independent of the vessel's electrical system (Ref: 46 CRF 113.30-3(b)).

Hand held radios are not an acceptable substitute for the sound powered telephones or other means of communication.

Cite: 4-8-3/5.5.4 Electrical Systems – Electrical Equipment – Main and Emergency Switchboards – Instrumentation

Each AC switchboard must have a voltage regulator functional cut-out switch for transferring from automatic to manual control mode and a manual control rheostat for exciter field.

A static exciter is prohibited by 46 CFR 111.12-3 for the emergency generator, unless the generator is provided with a permanent magnet or residual magnetism type exciter that has the capability of voltage build-up after two month of no operation.

For electric cables in hazardous areas, the electric cable construction and the cable glands are to achieve the appropriate seal so that gas cannot migrate or pass through the cable.

Electrical installations in hazardous locations must comply with one of the following:

(a) Equipment required to be identified for Class I locations in NFPA 70 (NEC) Articles 500 through 504 must be tested and listed by an independent laboratory to ANSI/UL 913 or ANSI/UL 1203.

(b) Equipment required to be identified for Class I locations must be tested and listed by an independent laboratory to one or more of the types of protection in ANSI/ISA Series of standards incorporated in NFPA 70 Article 505.

(c) Equipment must be tested or approved to the referenced IEC 60079 Series of standards in 46 CFR 111.105 and listed or certified under the IECEx scheme by an independent laboratory. Certification under the ATEX scheme is not acceptable. See Section II/Cite: II-1/45 of this Supplement.

Note: An independent laboratory means a laboratory that is accepted by the Commandant under 46 CFR Part 159 for the testing and listing or certification of electrical equipment.

Intrinsically safe systems or associated apparatus must meet the following “Ex ia” for Zones 0 and 1 (Class I, Division 1).

Painting of cables is not permitted.

The degree of remote propulsion control and automation is to be based on the level of manning intended for the propulsion machinery space.

One copy of a qualitative failure analysis must be submitted for propulsion controls, microprocessor-based system hardware, safety controls, automated electric power management, automation required to be independent that is not physically separate and any other automation that in the judgment of the reviewing authority potentially constitutes a safety hazard to the
vessel or personnel in case of failure. The QFA should enable the designer to eliminate single points of failure.

Note: The qualitative failure analysis is intended to assist in evaluating the safety and reliability of the design. It should be conducted to a level of detail necessary to demonstrate compliance with applicable requirements and should follow standard qualitative analysis procedures. Assumptions, operating conditions considered, failures considered, cause and effect relationships, how failures are detected by the crew, alternatives available to the crew, and necessary design verification tests should be included. Questions regarding failure analysis should be referred to the reviewing authority at an early stage of design.

A Design Verification test is to be performed once, immediately after the installation of the automated equipment or before issuance of the initial Certificate of Inspection (COI) (and thereafter whenever major changes are made to the system or its software), to verify that automated systems are designed, constructed and operate in accordance with the applicable ABS rules and requirements of this supplement. The purpose of design verification testing is to verify the conclusions of the QFA. The Design Verification Test Procedure (DVTP) is therefore an extension of the QFA and the two may be combined into one document. The DVTP should demonstrate that all system failures are alarmed and that all switchovers from a primary system component to a back-up component are also alarmed.

Periodic Safety tests must be conducted annually to demonstrate the proper operation of the primary and alternate controls, alarms, power sources, transfer override arrangements, interlocks and safety controls. Systems addressed must include fire detection and extinguishing, flooding safety, propulsion, maneuvering, electric power generation and distribution and emergency internal communications. Table 1 of Section 4-9-2 of ABS Rules for Building and Classing Offshore Support Vessels, Table 2 of 4-9-3 and Tables 3 through 6 of 4-9-4, as applicable to the vessel’s installed machinery and level of manning, should be used as a guide in developing the Periodic Safety Test Procedure (PSTP).

Design Verification and Periodic Safety test procedures are to be submitted for approval and retained aboard the vessel. Test procedure documents must be in a step-by-step or check off list format. Each test instruction must specify equipment status, apparatus necessary to perform the tests, safety precautions, safety control and alarm set points, the procedure to be followed, and the expected test result. Test techniques must not simulate monitored system conditions by maladjustment, artificial signals, improper wiring, tampering, or revision of the system unless the test would damage equipment or endanger personnel. Where a test meeting the restrictions on test techniques will damage equipment or endanger personnel, an alternative test method shall be proposed together with an explanation of why it is an equivalent test.

It is important to remember that the DVTP tests the response of the automation system to component failures within the system as predicted by the QFA and that the PSTP tests the performance of the automation system, its sensors, alarms, and actuators, and the interconnecting wiring. The design verification and periodic safety tests are to be witnessed by the surveyor. The OCMI must be notified prior to testing and may choose to attend these tests to verify that vital system automation is appropriate to the level of manning requested on the vessel’s COI.
Where it is intended to obtain USCG certification for a minimally attended machinery space, the ABS ACC requirements as well as the additional Cites contained in this Supplement are applicable.

Where it is intended to obtain USCG certification for an unattended machinery space, the ABS ACCU requirements as well as the additional Cites contained in this Supplement are applicable.

Note: It is the Owner’s responsibility to advise ABS as to the level of manning of the propulsion machinery space that will requested from the USCG.

Vessels with minimally attended or periodically unattended machinery plants must have a planned maintenance program to ensure continued safe operation of all vital systems. The program must include maintenance and repair manuals for work to be accomplished by maintenance personnel and check off lists for routine inspection and maintenance procedures.

The planned maintenance program must be functioning prior to the completion of the evaluation period for reduced manning.

Maintenance and repair manuals must include details as to what, when and how to troubleshoot, repair and test the installed equipment and what parts are necessary to accomplish the procedures. Schematic and logic diagrams must be included in this documentation. Manuals must clearly delineate information that is not applicable to the installed equipment.

A set of USCG approved automation testing procedures shall be maintained on board and made available upon request.

Cite: 4-9-2/11.3 Remote Propulsion Control and Automation – Remote Propulsion Control – Application & System Requirements

Sensors for the primary speed, pitch or direction of rotation control in closed loop propulsion control systems must be independent and physically separate from required safety, alarm or instrumentation sensors.

Cite: 4-9-2/13 Remote Propulsion Control and Automation – Remote Propulsion Control – Control on Navigation Bridge

An alarm to indicate starting capability of less than 50% of the required total starting capacity must be provided.
Propulsion control from the Navigating Bridge is to be provided.

A personnel alarm must be provided and must annunciate on the Navigating Bridge if not routinely acknowledged at the centralized control station or in the machinery space.

All required alarms must annunciate throughout the Centralized Control Station and the machinery space.

ACC - The Engineering Control Center must include the controls and instrumentation necessary to place the ship service and propulsion generators in service in 30 seconds.

ACCU – Automatically restore power in not more than 30 seconds.

The fire detection and alarm system of approved type must activate all alarms at the Centralized Control Station, the Navigating Bridge, and throughout the machinery spaces and engineer’s accommodations.

The Centralized Control Station must include control of the main machinery space fire pumps. Where one or more fire pumps is required to be independent of the main machinery space, at least one of such pumps must be controlled from the Navigating Bridge. See Section II/Cite II-2/7.2

All required fire pump control locations must include the controls necessary to charge the fire main and have (1) a fire main pressure indicator or (2) a fire main low pressure alarm.
II. SOLAS INTERPRETATIONS NOT ADDRESSED BY ABS RULES

General – Equipment Approvals – Fire Equipment and Arrangements – Navigation Equipment Approval for Ships II-1

A. Construction – Subdivision and Stability, Machinery and Electrical Installations

Cite: II-1/43 Emergency Source of Electrical Power in Cargo Ships II-3
Cite: II-1/45 Precautions Against Shock, Fire and Other Hazards of Electrical Origin II-3

B. Construction – Fire Protection, Fire Detection and Fire Extinction

Cite: II-2/3.1 Definitions – Accommodation Spaces II-3
Cite: II-2/4.2.2.5.1 Fuel Oil Piping II-3
Cite: II-2/7.2 & FSS Code Chapter 9 Fixed Fire Detection and Fire Alarm Systems II-3
Cite: II-2/7.4 Fixed Fire Detection and Fire Alarm Systems – Protection of Machinery Spaces II-4
Cite: II-2/9.2.3.1 Structural Fire Protection – Method of Protection in Accommodation Area II-5
Cite: II-2/9.2.3.3 Fire Integrity of Bulkheads and Deck II-5
Cite: II-2/9.3.1 “A” Class Divisions Penetrations II-5
Cite: II-2/9.7.3 Duct Penetrations II-5
Cite: II-2/10.2.1.5 Fire Fighting – Fire Mains and Hydrants – Number and Position of Hydrants II-5
Cite: II-2/10.2.3.1.1 Fire Fighting – Fire Mains and Nozzles – General Specifications II-6
<table>
<thead>
<tr>
<th>Cite</th>
<th>Section II</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-2/10.2.3.2.1</td>
<td>Fire Fighting – Fire Hoses and Nozzles – Number and Diameter of Fire Hoses</td>
</tr>
<tr>
<td>II-2/10.2.3.3</td>
<td>Fire Fighting – Fire Hoses and Nozzles – Sizes and Types of Nozzles</td>
</tr>
<tr>
<td>II-2/10.3 & FSS Code Chapter 4</td>
<td>Portable Fire Extinguishers – Fire Extinguishers</td>
</tr>
<tr>
<td>II-2/10.4 & FSS Code Chapter 5.2.2</td>
<td>Fixed Gas Fire-Extinguishing Systems – Carbon Dioxide Systems</td>
</tr>
<tr>
<td>II-2/10.4.1.1.3, 10.5 & FSS Code Chapter 7</td>
<td>Fixed Pressure Water-Spraying Fire-Extinguishing Systems in Machinery Spaces</td>
</tr>
<tr>
<td>II-2/10.4 & FSS Code Chapter 14</td>
<td>Fixed Deck Foam Systems</td>
</tr>
<tr>
<td>II-2/10.5.4</td>
<td>Fire-Extinguishing Arrangements in Machinery Spaces – Other Machinery Spaces</td>
</tr>
<tr>
<td>II-2/10.5.6</td>
<td>Fixed Local Application fire-extinguishing systems</td>
</tr>
<tr>
<td>II-2/10.6</td>
<td>Automatic Sprinkler, Fire Detection and Fire Alarm Systems for Accommodation and Service Spaces</td>
</tr>
<tr>
<td>II-2/10.10.3</td>
<td>Storage of Fireman’s Outfits</td>
</tr>
<tr>
<td>II-2/13</td>
<td>Means of Escape</td>
</tr>
<tr>
<td>II-2/13</td>
<td>Miscellaneous Items</td>
</tr>
</tbody>
</table>

C. Life-Saving Appliances and Arrangements

<table>
<thead>
<tr>
<th>Cite</th>
<th>Section II</th>
</tr>
</thead>
<tbody>
<tr>
<td>III/3</td>
<td>Definitions</td>
</tr>
<tr>
<td>III/4</td>
<td>Evaluation, Testing and Approval of Life-Saving Appliances and Arrangements</td>
</tr>
<tr>
<td>III/6</td>
<td>Communications</td>
</tr>
<tr>
<td>III/7</td>
<td>Personal Life-Saving Appliances</td>
</tr>
<tr>
<td>Cite</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>III/8</td>
<td>Muster List and Emergency Instructions</td>
</tr>
<tr>
<td>III/11</td>
<td>Survival Craft Muster and Embarkation Arrangements</td>
</tr>
<tr>
<td>III/13</td>
<td>Stowage of Survival Craft</td>
</tr>
<tr>
<td>III/18</td>
<td>Line-Throwing Appliances</td>
</tr>
<tr>
<td>III/32.3</td>
<td>Personal Life-Saving Appliances – Immersion Suits and Thermal Protective Aids (Cargo Ships)</td>
</tr>
<tr>
<td>III/34 & LSA Code VI 6.1.2</td>
<td>Launching Appliances Using Falls and a Winch</td>
</tr>
<tr>
<td>III/34 & LSA Code VI 6.1.2.9</td>
<td>Launching Appliances Using Falls and a Winch – Lowering Speed</td>
</tr>
<tr>
<td></td>
<td>D. Radiocommunications</td>
</tr>
<tr>
<td>IV/1</td>
<td>Radiocommunications – Application</td>
</tr>
</tbody>
</table>
II. SOLAS INTERPRETATIONS NOT ADDRESSED BY ABS RULES

General

Equipment Approval by the USCG

The regulations in 46 CFR 2.75 address USCG authority over approvals of safety equipment, materials and installations. Neither these regulations, nor 46 CFR part 8, provide the regulatory authority to delegate type approval functions to a classification society. Therefore, the type approval certificates of the class society for the vessel enrolled in ACP cannot be used to meet type approval where required by U.S. regulations. For U.S. flag vessels, the USCG issues type approvals for a variety of equipment and materials including fire suppression equipment; structural fire protection materials; navigation equipment; pollution prevention equipment; and life-saving appliances, generally by independent laboratory testing, inspection, and/or oversight.

While the USCG recognizes some class societies to perform the role of independent lab, per 46 CFR 159.010, it is a separate and distinct regulatory program from the ACP. Class societies recognized by the USCG to perform functions under both the ACP and independent lab programs do not have unique authority to make decisions on behalf of the USCG in matters related to USCG type approval, or to make decisions regarding the modification to installed equipment holding USCG approval.

The USCG approves applicable “SOLAS” lifesaving equipment based on the IMO LSA Code incorporated by reference in the applicable subparts of Title 46 Subchapter Q. Likewise for fire protection items, the USCG approves “SOLAS” materials using the IMO Fire Test Procedures Code and the IMO Fire Safety Systems Code. All USCG approved equipment receives an approval number and must be permanently marked with that number. The first six digits of an approval number assigned by the Coast Guard are the approval series. Where approval is based on a subpart of 46 CFR Subchapter Q (i.e., parts 159 to 164), the approval series corresponds to the number of the subpart.

CGMIX (http://cgmix.uscg.mil) provides a listing of current and formerly approved equipment and materials. CGMIX is a US Coast Guard maintained publically available website providing maritime information to the public in the form of searchable databases.

Alternatives to USCG approval

Provisions within the 1996 USCG Authorization Act also allow the use of equipment approved by or on behalf of other governments under certain circumstances. In the case of life-saving appliances, there must be a reciprocal agreement in place to install equipment approved by/on behalf of that country on a U.S. vessel to meet carriage requirements. Documentation must be maintained
on board to demonstrate Commandant (CG-ENG-4) accepted the life-saving appliance for installation in lieu of USCG approved equipment.

Additionally, a Mutual Recognition Agreement (MRA) exists between the U.S. and the European Community (EC), and the U.S. and the European Free Trade Association (EFTA), which address a limited number of items of fire protection, lifesaving, and navigation equipment. This US/EC MRA makes it possible for a manufacturer with a European Approval (MED/wheelmark) to obtain USCG approval covered by the MRA. The US/EC MRA permits the “Notified Bodies” responsible for issuing approvals in Europe to issue USCG approval. Likewise, the USCG may issue the European Approval for manufacturers having a USCG approval if the item is included within the scope of the MRA. The US/EC MRA does not change the requirement of using USCG approved equipment and materials on U.S. Flag vessels, rather, it allows an alternative means for obtaining USCG approval and still requires the issuance of a unique USCG approval number by the Notified Body, or European Marine Equipment Directive (MED) “wheelmark” by the USCG. The wheelmark on its own does not constitute USCG approval.

Further policy guidance is contained in NVIC 8-04 Change 1 and includes tables with the name and approval series for structural fire protection materials, navigation equipment, and lifesaving appliances eligible for approval through the US/EC MRA process. All other products requiring approval must have a USCG issued approval number. See CGMIX for a current list of approved equipment. CGMIX will not list those products approved under the US/EC MRA by a Notified Body, only products issued a wheelmark by the USCG.

If questions arise concerning the status of a piece of equipment or material, the classification society, preferably through their ACP point of contact, should send an e-mail to Commandant (CG-ENG-4) via typeapproval@uscg.mil.
A. Construction – Subdivision and Stability, Machinery and Electrical Installations

Cite: II-1/43 Emergency Source of Electrical Power in Cargo Ships

There must be visible indicators in the machinery space to show when the automatically controlled emergency power source is supplying the emergency loads.

Cite: II-1/45 Precautions Against Shock, Fire and Other Hazards of Electrical Origin

“Standards not inferior to those acceptable to the Organization” means standards contained in only one of the following sources:

(a) The requirements of 46 CFR 111.105; or
(b) IEC 60092-502: 1999 “Electrical installations in ships – tankers” as supplemented by interpretations and additional requirements of IEC 60092-502: 1999 issued by the U.S. Coast Guard in April 2009.
(c) Any U.S. flag OSV that operates seaward of the boundary line and that is certified to carry hazardous or NLS cargoes must comply with CG-ENG Policy Letter 03-12 “POLICY ON THE IMPLEMENTATION OF IMO RESOLUTION A.673(16), GUIDELINES FOR THE TRANSPORT AND HANDLING OF LIMITED AMOUNTS OF HAZARDOUS AND NOXIOUS LIQUID SUBSTANCES IN BULK ON OFFSHORE SUPPORT VESSELS, FOR NEW AND EXISTING U.S OFFSHORE SUPPLY VESSELS.

B. Construction – Fire Protection, Fire Detection and Fire Extinction

Cite: II-2/3.1 Definitions – Accommodation Spaces

“A pantry containing no cooking appliances” is one which contains only low heat warming equipment, has steel furnishings and is not used as a storeroom for cleaning gear, linen supplies or any other combustible material. A dining room containing such appliances shall not be regarded as a pantry.

Cite: II-2/4.2.5.1 Fuel Oil Piping

The use of heat sensitive materials is prohibited in piping systems conveying flammable or combustible products. Heat sensitive materials are those having a solidus melting point below 1700°F. Limited lengths (not exceeding 76 cm) of flexible hose that have been fire and pressure tested to the requirements of ISO 15540 or SAE J1942 are acceptable.

Cite: II-2/7.2 Fixed Fire Detection and Fire Alarm Systems

FSS Code
Chapter 9

Fire protection systems must be USCG approved equipment.
A conductor must not be used as a common return from more than one zone.

Each connection box must be constructed in accordance with NEMA 250 Type 4 or 4X, or IEC IP56 requirements (46 CFR 113.10-7).

There must be at least two sources of power for the electrical equipment of each fire detecting and alarm system. The normal source must be the main power source. The other source must be the emergency power source or an automatically charged battery. If the other source is an automatically charged battery, the charger must be supplied from the emergency power source. Upon loss of power to the system from the normal source, the system must be automatically supplied from the other source.

The capacity of each branch circuit providing power to a fire detection or alarm system must not be less than 125 percent of the maximum load.

An alarm on one fire detection circuit shall not interfere with the normal operation of any other circuit (46 CFR Part 161.002).

Each fire detecting zone must not include spaces on more than one deck, except:

(a) Adjacent and communicating spaces on different decks in the ends of the vessel having a combined ceiling area of not more than 279 m² (3000 ft²).
(b) Isolated rooms or lockers in such spaces as mast houses, wheelhouse top, etc., which are easily communicable with the area of the fire-detecting circuit to which they are connected.
(c) Systems with indicators for individual spaces.

The fire detecting zone must not contain more than 50 protected rooms or spaces.

The system must visually indicate the zone in which the alarm originated.

The detectors, control panel, manual call points and alarms must be listed in the approved component list for the USCG approved system.

The fire detecting system must be used for no other purpose, except it may be incorporated with the manual alarm system.

A framed chart or diagram must be installed in the wheelhouse or control station adjacent to the detecting cabinet indicating the location of the detecting zones and giving operating instructions.

Cite: II-2/7.4 Fixed Fire Detection and Fire Alarm Systems – Protection of Machinery Spaces

The fire control station must include an indicating unit or a fire alarm annunciator that indicates the machinery space that is on fire.
A sufficient number of call points must be employed such that a person escaping from any space would find an alarm box convenient on the normal route of escape.

The manual alarm system must be used for no other purpose, except it may be incorporated with the fire detecting system.

Manual fire alarm boxes shall be clearly and permanently marked “IN CASE OF FIRE BREAK GLASS” in at least 12.5 mm (½ in) letters.

Detector spacing shall be in accordance with the manufacturer’s recommendation. Detector spacing in spaces with ceilings greater than 3 m (10 ft) must be corrected in accordance with NFPA 72E.

Only Method IC shall be used.

In accordance with 46 CFR 112.05-5(e) except as specifically provided in 46 CFR 127.220 in Subchapter L for Offshore Supply Vessels or 46 CFR 92.05-15 in Subchapter I, no compartment that has an emergency power source or its vital components may adjoin a Category A machinery space or those spaces containing the main source of electrical power and its vital components.

Non-ducted ventilation arrangements are to comply with the guidance provided in NVIC 9-97, CH 1.

A large duct may not be subdivided into multiple smaller ducts when passing through a fire boundary to avoid the requirement to install automatic fire dampers.

At each fire hose valve there shall be marked in not less than 50 mm (2 in) red letters and figure: “FIRE STATION.”
Cite: II-2/10.2.3.1.1 Fire Fighting – Fire Hoses and Nozzles – General Specifications

Each section of fire hose shall be lined commercial fire hose that conforms to Underwriters’ Laboratories, Inc. Standard 19 or Federal Specification ZZ-H-451E.

Cite: II-2/10.2.3.2.1 Fire Fighting – Fire Hoses and Nozzles – Number and Diameter of Fire Hoses

The minimum hydrant and hose size shall be 40 mm (1.5 in.).

On cargo ships over 1500 gross tons, the minimum hydrant and hose size for interior and exterior locations is 65 mm (2.5 in.). For interior locations, where 65 mm (2.5 in) hydrants and hose are required, two 40 mm (1.5 in) outlets with two 40 mm, (1.5 in) hoses supplied through a siamese connection may be substituted.

Where two 40 mm (1.5 in) hydrants and hoses are permitted in lieu of one 65 mm (2.5 in) hydrant and hose, both of the outlets operating simultaneously are to be considered as a single outlet for the purpose of complying with the minimum number of jets criteria for fire pump capacity.

Cite: II-2/10.2.3.3 Fire Fighting – Fire Hoses and Nozzles – Size and Types of Nozzles

Nozzles must be USCG approved equipment.

Cite: II-2/10.3 & FSS Code Chapter 4 Portable Fire Extinguishers – Fire Extinguishers

Fire extinguishers must be USCG type-approved equipment.

Cite: II-2/10.4 & FSS Code Chapter 5.2.2 Fixed Fire-Extinguishing Systems – Fixed Gas Fire-Extinguishing Systems

Carbon dioxide and clean agent systems, such as FM200, NOVEC 1230, Halon or Halon substitutes, etc., are to be USCG Type Approved. The design and installation must be in accordance with the USCG Type Approved manufacturer’s manual. Where SOLAS and the USCG Type Approved manufacturer’s manual have dissimilar requirements (such as agent required calculations) the higher standard is to be satisfied.

Markings

The control cabinets or spaces containing valves or manifolds for the various fire extinguishing systems must be marked “STEAM/CARBON DIOXIDE/CLEAN AGENT/FOAM /WATER SPRAY [as appropriate] APPARATUS” in not less than 50 mm (2 in) red letters.
Cite: II-2/10.4.1.1.3, Fixed Pressure Water-Spraying Fire-Extinguishing Systems in Machinery Spaces

Water mist system requirements are outlined in IMO MSC/Circ.1165 for machinery spaces and IMO Resolution A.800(19) for accommodation and service spaces. These guidelines are used in conjunction with USCG Type Approved Manuals. Water spray system requirements are in FSS Chapter 7.

Cite: II-2/10.4 & Fixed Deck Foam Systems

The system must be USCG approved equipment and must comply with the manufacturer's approved Design, Installation, Operation and Maintenance Manual that meets Chapter II-2, Regulation 10.4 of SOLAS and the following supplemental requirements:

Controls

Complete, but simple instructions for the operation of the system shall be located in a conspicuous place at or near the controls.

The deck foam system must be capable of being actuated, including introduction of foam to the foam main, within three minutes of notification of a fire.

Piping

All piping, valves, and fittings of ferrous materials shall be protected inside and outside against corrosion unless specifically approved otherwise.
All piping, valves, and fittings shall be securely supported, and where necessary, protected against injury.

Drains and dirt traps shall be fitted where necessary to prevent the accumulation of dirt or moisture.

Piping shall not be used for any other purpose than firefighting, drills and testing.

Discharge Outlets

At least one mounted foam appliance shall be provided for each required foam station.

Markings

Foam apparatus, the control cabinets or spaces containing valves or manifolds for the various fire extinguishing systems shall be distinctly marked in conspicuous red letters at least 50 mm (2 in) high “FOAM FIRE APPARATUS”.
A fixed pressure water-spraying, fire extinguishing system is not acceptable by the USCG except for lamp lockers, paint lockers and pump rooms. Where installed in these spaces, it shall comply with Chapter 7 of the FSS Code and the following:

Water mist system requirements are outlined in IMO MSC/Circ.1165 for machinery spaces and IMO Resolution A.800(19) for accommodation and service spaces. These guidelines are used in conjunction with USCG Type Approved Manuals.

For Machinery of Category A above 500 m³ in volume, the system must be USCG approved equipment and must comply with manufacturer’s approved Design, Installation, Operation and Maintenance Manual that meets Chapter II-2, Regulation 10.5.6 and MSC/Circ. 913 as amended by MSC.1/Circ. 1387

When fitted as additional equipment, automatic sprinkler systems are also to comply with National Fire Protection Association (NFPA) Standard 13-1996. Where SOLAS Reg. II-2/12 and NFPA Std. 13 have similar requirements, the higher standard is to be satisfied. The following supplemental requirements apply:

The sprinkler heads, alarms, dry pipe valves, and actuating mechanisms shall be listed or approved by a recognized independent testing lab.

The control the minimum design area required by SOLAS is (280 m²) 3,013 ft² cabinets or spaces containing valves or manifolds shall be distinctly marked in conspicuous red letters at least 50 mm (2 in) high “AUTOMATIC SPRINKLING SYSTEM.”

Lockers or spaces where emergency equipment is stowed shall be marked: “EMERGENCY EQUIPMENT”.

The doors giving access to either of the two required means of escape shall not be lockable, except that crash doors or locking devices, capable of being easily forced in an emergency, may be employed provided that a permanent and conspicuous notice giving instructions on how to open the door or the lock is attached to both sides of the door. This paragraph shall not apply to outside doors to deckhouses where such doors are locked by key only, and such key is under control of one of the vessel’s officers.
All public spaces having a deck area of over 28 m² (300 ft²) shall have at least two exits. Where practicable, the exits shall give egress to different corridors, spaces, or rooms to minimize the possibility of one incident blocking both means of escape.

All interior stairways, other than those within the Machinery Spaces or Cargo Holds, shall have a minimum width of 0.71 m (28 in.). The angle of inclination with the horizontal of such stairways shall not exceed 50º.

Cite: II-2/13 Miscellaneous Items

Small rooms or spaces having a secondary means of escape which is not obviously apparent shall have a suitable sign in red letters “EMERGENCY EXIT” directing attention to such escape.

C. Life-Saving Appliances and Arrangements (This supplement entry is intended to add clarity to the various terms used but not clearly defined in SOLAS.)

Cite: III/3 Definitions

“Accommodation” means a cabin or other covered or enclosed place intended to carry persons. Each place where offshore workers are carried is considered an accommodation, whether or not it is covered or enclosed. Accommodations include, but are not limited to halls, dining rooms, mess rooms, lounges, corridors, lavatories, cabins, offices, hospitals, cinemas, game and hobby rooms, and other similar spaces open to persons on board.

“Embarkation station” means the place where a survival craft is boarded.

“Fleet angle for a wire rope leading to a winch drum” means the angle included between an imaginary line from the lead sheave perpendicular to the axis of the drum and the line formed by the wire rope when led from the lead sheave to either extremity of the drum.

“Marine evacuation system” means an appliance designed to rapidly transfer large numbers of persons from an embarkation station by means of a passage to a floating platform for subsequent embarkation into associated survival craft, or directly into associated survival craft.

“Muster station” means the place where the crew and offshore workers assemble before boarding a survival craft.

“Seagoing condition” means the operating condition of the ship with the personnel, equipment, fluids and ballast necessary for safe operation on the waters where the ship operates.

“Survival craft” means a craft capable of sustaining the lives of persons in distress after abandoning the ship on which they were carried. The term includes lifeboats, liferafts, buoyant apparatus, and life floats, but does not include rescue boats.

“Toxic vapor or gas” means a product for which emergency escape respiratory protection is required under subchapter 17 of the International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk (IBC Code), and in subchapter 19 of the

Cite: III/4 Evaluation, Testing and Approval of Life-Saving Appliances and Arrangements

Life-saving appliances required by SOLAS Chapter III must be approved by the USCG. However, equipment marked with a CG approval number issued under the US-EC or US-EFTA Mutual Recognition Agreements per NVIC 8-04 Change 1, discussed above in the “General” section, are acceptable.

In addition, life-saving equipment accepted under the reciprocal acceptance agreement with certain Administrations, such as Norway, may also be used on a U.S. flag vessel. A copy of the USCG acceptance letter must be provided with each piece of equipment supplied to a U.S. flag ship, under these agreements.

Products marked with an approval number containing one of the following USCG approval series indicate compliance with SOLAS requirements:

- 160.017 Embarkation-Debarkation Ladders (only if marked “SOLAS 74/83”)
- 160.040 Line-throwing appliances
- 160.115 Winches
- 160.117 Embarkation-Debarkation Ladders
- 160.118 Rigid liferafts
- 160.121 Hand red flares
- 160.122 Floating orange smoke signals
- 160.132 Davits
- 160.133 Release Mechanisms (on-load/offload) for Lifeboats and Rescue Boats
- 160.135 Lifeboats
- 160.136 Rocket parachute flares
- 160.150 Ring life buoys
- 160.151 Inflatable liferafts
- 160.155 Lifejackets
- 160.156 Rescue boats
- 160.157 Self-activating smoke signals
- 160.162 Hydrostatic release units
- 160.163 Liferaft launching appliance
- 160.170 Liferaft automatic disengaging apparatus
- 160.171 Immersion suits
- 160.174 Thermal protective aids
- 160.175 Marine Evaluation Systems
- 160.176 Inflatable Lifejackets (SOLAS)
- 161.110 Floating electric water lights
- 161.112 Lifejacket lights
- 163.003 Pilot Ladders to comply with SOLAS V/17, IMO Res. A.889(21)
 Accommodation ladders which are used in conjunction with a pilot ladder for pilot transfer need not be approved under USCG approval series 163.003. Such accommodation ladders may be approved by ABS under the Alternate Compliance Program to the requirements of SOLAS Ch.II-1/Reg. 3-9.
Where a particular life-saving appliance or arrangement is required, the Commandant, (CG-ENG), must accept any other appliance or arrangement that is at least as effective as that specified. This acceptance is not delegated to the class society under the ACP. If necessary, the Commandant, (CG-ENG), may require engineering evaluations and tests to demonstrate the equivalence of the substitute appliance or arrangement.

Life-saving appliances carried on board the ship in addition to equipment of the type required under this part must be approved equipment or be acceptable to the cognizant USCG Officer in Charge of Marine Inspection (OCMI) for use on the ship.

Cite: III/6 Communications

Each item of radio communications equipment must be type accepted by the Federal Communications Commission.

Cite: III/7 Personal Life-Saving Appliances

Each child-size lifejacket and immersion suit must be appropriately marked and stowed separately from adult or extended-size devices.

Each lifejacket and immersion suit must be marked with the vessel’s name.

Inflatable lifejackets, if carried, must all be of the same or similar design.

Each lifejacket, immersion suit, and anti-exposure suit container must be marked in block capital letters and numbers with the quantity, identity, and size of the equipment stowed inside the container. The equipment may be identified in words or with the appropriate symbol from IMO Resolution A.760(18).

Cite: III/8 Muster List and Emergency Instructions

Instructions for offshore workers must include illustrated instructions on the method of donning lifejackets.

Cite: III/11 Survival Craft Muster and Embarkation Arrangements

If a davit-launched survival craft is not intended to be moved to the stowed position with persons on board, the craft must be provided with a means for bringing it against the side of the vessel and holding it alongside the vessel to allow persons to safely disembark after a drill.

Cite: III/13 Stowage of Survival Craft

Each life-raft must be arranged to permit it to drop into the water from the deck on which it is stowed. The liferaft stowage arrangement meets this requirement if it
(i) is outboard of the rail or bulwark,
(ii) is on stanchions or on a platform adjacent to the rail or bulwark, or
(iii) has a gate or other suitable opening large enough to allow the liferaft to be pushed
directly overboard and, if the liferaft is intended to be available for use on either side
of the vessel, such gate or opening is provided on each side of the vessel.

Cite: III/18 Line-Throwing Appliances

In addition to the equipment approved and carried as part of the appliance, each line throwing
appliance must also have an auxiliary line that:

(1) if other than manila, has a breaking strength of at least 40 kN (9,000 lb);

(2) if other than manila, is of a dark color or of a type certified to be resistant to deterioration
from ultraviolet light; and

(3) is at least 450 m (1,500 ft) long.

The line throwing appliance and its equipment must be readily accessible for use, stowed in its
container carried within the pilothouse or on the navigating bridge or stowed in a portable
magazine chest.

Cite: III/32.3 Personal Life-Saving Appliances – Immersion Suits and Thermal
Protective Aids (Cargo Ships)

Immersion suits must be carried for each person on board on all cargo vessels except those
operating between 32° north and 32° south latitude regardless of whether it has totally enclosed
lifeboats.

Cite: III/34 & LSA Code
VI 6.1.2

Launching Appliances Using Falls and a Winch

Each unguarded fall must not pass near any operating position of the winch, such as hand cranks,
pay out wheels, and brake levers.

Each fall, where exposed to damage or fouling, must have guards or equivalent protection. Each
fall that leads along a deck must be covered with a guard which is not more than 300 mm (1 ft)
above the deck.

Each winch drum must be arranged so the fall wire winds onto the drum in a level wrap.
The lowering speed for a survival craft loaded with all of its equipment must be not less than 70 percent of the speed required under Regulation VI 6.1.2.8 (LSA Code).

The lowering speed for a fully loaded survival craft must be not more than 1.3 m per second (256 ft per minute).

D. Radiocommunications

Cite: IV/1 Radiocommunications – Application

The required EPIRB must be marked with the vessel’s name.
III. ADDITIONAL REQUIREMENTS NOT CONTAINED IN ABS RULES, MARPOL OR SOLAS

A. Diving Systems

B. Accommodations for Officers and Crew
 1. Application
 2. Intent
 3. Location of Crew Spaces
 4. Construction
 5. Sleeping Accommodations
 6. Wash Spaces, Toilet Spaces, and Shower Spaces
 7. Messrooms
 8. Hospital Space
 9. Other Spaces
 10. Lighting
 11. Heating
 12. Insect Screens

C. Navigation Safety Requirements That Apply to All Vessels

 Cite: 33 CFR 164.35(g) Navigational Equipment
 1. Application
 2. Maneuvering Information

 Cite: 33 CFR 164.33(2)(i) & 1. Application
 2. Requirements

 Cite: 33 CFR 164.41 Electronic Position Fixing Devices
 1. Application
 2. Devices
D. Requirements in Addition to MARPOL Annexes

ANNEX I

Cite: 33 CFR 151.27 Shipboard Oil Pollution Emergency Plan

Cite: 33 CFR 155.310 Containment of Oil and Hazardous Material Cargo Discharge

Cite: 33 CFR 155.320 Fuel Oil and Bulk Lubricating Oil Discharge Containment

Cite: 33 CFR 155.380 Oily-water Separating Equipment, Bilge Alarm and Bilge Monitor Approval Standards

Cite: 33 CFR 155.450 Placard

Cite: 33 CFR 155.780 Emergency Shutdown

Cite: 33 CFR 155.790 Deck Lighting

Cite: 33 CFR 155.800 Transfer Hoses

ANNEX II

Cite: 33 CFR 151.27 Shipboard Marine Pollution Emergency Plan for Noxious Liquid Substances (NLS)

ANNEX III

ANNEX IV (NOT ADOPTED) COMPARISON OF USCG RULES TO MARPOL

Cite: 33 CFR 159.53 Marine Sanitation Devices (MSDs)

ANNEX V

Cite: 33 CFR 151.51 Garbage Pollution – Applicability

Cite: 33 CFR 151.55 Garbage Pollution – Record Keeping Requirements

Cite: 33 CFR 151.57 Garbage Pollution – Waste Management Plans

Cite: 33 CFR 151.59 Garbage Pollution – Placards

ANNEX VI

Cite: 46 CFR 63.25-9 Incinerators
III. ADDITIONAL REQUIREMENTS NOT CONTAINED IN ABS RULES, MARPOL OR SOLAS

A. Diving Systems

(a) Diving Systems are to be Classed by ABS or a USCG-authorized Classification Society in accordance with the applicable Classification Society Rules for Diving Systems and the IMO Code of Safety for Diving Systems; and

(b) Pressure Vessels for Human Occupancy (PVHOs) and associated pressurized equipment (such as Viewports, Medical Locks, Clamps, Closures, Trunks, etc.) are to meet the requirements of the ASME Safety Standard for Pressure Vessels for Human Occupancy, PVHO-1; and

(c) Pressure vessels are to meet the requirements of ABS Rules for pressure vessels or the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 or 2.

B. Accommodations for Officers and Crew

1. Application

(a) All vessels greater than 100 gross tons shall comply with the requirements of this section. Vessels of less than 100 gross tons shall meet the applicable requirements of this section insofar as is reasonable and practicable.

(b) Accommodations for offshore workers are addressed in Section IV.

2. Intent

(a) It is the intent of this section that the accommodations provided for officers and crew on all vessels shall be securely constructed, properly lighted, heated, drained, ventilated, equipped, located, arranged, and insulated from undue noise, heat, and odors.

(b) The crew referred to herein includes all persons, except the licensed officers, regularly employed on board any vessel. Where the requirements for the accommodation of licensed officers are not otherwise specified, they shall be of at least equivalent to that indicated herein for the crew.

(c) For the purpose of this subpart, the term “crew spaces” shall include sleeping rooms, messrooms, recreational rooms, toilet and shower spaces, etc., which are intended for the exclusive use of the crew.

3. Location of Crew Spaces
(a) Crew quarters shall not be located farther forward in a vessel than a vertical plane located at 5% of the vessel’s length abaft the forward side of the stem at the designed summer load waterline. However, for vessels in other than ocean or coastwise service, this distance need not exceed 28 ft (8.5m). For the purpose of this paragraph, the length shall be as defined in 46 CFR 42.13-15 of subchapter E (Load Lines). No section of the deck of the crew spaces shall be below the deepest load line, except that in special cases such an arrangement may be approved provided that in no case shall the deck head of the crew space be below the deepest load line.

(b) There shall be no direct communication, except through solid, close fitted doors or hatches between crew spaces and chain lockers, cargo, stowage or machinery spaces.

4. Construction

All crew spaces are to be constructed in a manner suitable to the purpose for which they are intended and so they can be kept in a clean, workable, and sanitary condition.

5. Sleeping Accommodations

(a) Arrangements

(1) Where practicable, each licensed officer shall be provided with a separate stateroom.

(2) Sleeping accommodations for the crew shall be divided into rooms, no one of which shall berth more than four persons.

(b) Size

Each room shall be of such size that there are at least (2.78 m3) 30 ft2 of deck area and a volume of at least (5.8 m3) 210 ft3 for each person accommodated. The clear headroom shall be not less than (1.9 m) 6 ft 3 in. In measuring sleeping quarters allocated to crews of vessels, any equipment contained therein for the use of the occupants is not to be deducted from the total volume or from the deck area.

(c) Equipment

(1) Each person shall have a separate berth and not more than one berth shall be placed above another. The berths must be composed of material not likely to corrode. The overall size of a berth shall not be less than (68 cm) 27 in wide by (190 cm) 75 in long, except by special permission of the Commandant, USCG. The berths shall not be obstructed by pipes, ventilating ducts, or other installations.

(2) A locker shall be provided for each person accommodated in a room.

6. Wash Spaces, Toilet Spaces; and Shower Spaces
(a) There must be provided at least 1 toilet, 1 washbasin, and 1 shower for each 8 members of portion thereof in the crew who do not occupy rooms to which private or semi-private facilities are attached.

(b) The toilet rooms and washrooms must be located convenient to the sleeping quarters of the crew to which sleeping quarters of the crew to which they are allotted but must not open directly into such quarters except when they are provided as private or semiprivate facilities.

(c) All washbasins, showers, and bathtubs shall be equipped with adequate plumbing, including hot and cold running water. All toilets must be installed with adequate plumbing for flushing.

(d) At least 1 washbasin must be fitted in each toilet room, except where private or semi-private facilities are provided and washbasins are installed in the sleeping rooms.

(e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by partitions.

7. Messrooms

(a) Messrooms shall be located as near to the galley as is practicable except where the messroom is equipped with a steam table.

(b) Each messrooms must seat the number of persons expected to eat in the messroom at one time.

8. Hospital Space

(a) Each vessel which in the ordinary course of its trade makes voyages of more than 3 days duration between ports and which carries a crew of 12 or more, must be provided with a hospital space. This space shall be situated with due regard to the comfort of the sick so that they may receive proper attention in all weathers.

(b) The hospital shall be suitably separated from other spaces and shall be used for the care of the sick and for no other purpose.

(c) The hospital shall be fitted with berths in the ratio of one berth to every twelve members of the crew or portion thereof who are not berthed in single occupancy rooms, but the number of berths need not exceed six.

(d) The hospital shall have a toilet, washbasin, and bath tub or shower conveniently situated. Other necessary suitable equipment of such character as clothes locker, table, seat, etc., shall be provided.

(e) On vessels in which the crew is berthed in single occupancy rooms, a hospital space will not be required, provided that one room shall be designated and fitted for use as a treatment or isolation room. Such room shall meet the following standards:
(1) The room must be available for immediate medical use.

(2) A washbasin with hot and cold running water must be installed either in or immediately adjacent to the space and other required sanitary facilities must be conveniently located.

9. Other Spaces

(a) Sufficient facilities where the crew may wash and dry their own clothes. There shall be at least one tub or sink fitted with the necessary plumbing, including hot and cold running water.

(b) Recreation spaces.

(c) A space or spaces of adequate size shall be available on an open deck to which the crew has access when off duty.

10. Lighting

Each berth must have a light.

11. Heating

(a) All manned spaces shall be adequately heated and cooled in a manner suitable to the purpose of the space.

(b) The heating and cooling system for the accommodations must be capable of maintaining a temperature of 70°F (21°C) under normal operating conditions without undue curtailment of the ventilation.

(c) Radiators and other heating apparatus shall be so placed, and where necessary shielded, as to avoid risk of fire, danger, or discomfort to the occupants. Pipes leading to radiators or heating apparatus shall be insulated where those pipes create a hazard to persons occupying the space.

12. Insect Screens

Provisions shall be made to protect the crew quarters against the admission of insects.
C. Navigation Safety Requirements that Apply to All Vessels

This section applies to all self propelled vessels over 1600 gross tons when operating in the navigable waters of the United States, except the St. Lawrence Seaway.

Cite: 33 CFR 164.35(g) Navigational Equipment

1. Application

(a) The provisions of this section apply to all self propelled vessels over 1600 gross tons when operating in the navigable waters of the United States, except the St. Lawrence Seaway.

2. Maneuvering Information

(a) Maneuvering characteristics must be posted prominently on a fact sheet in the wheel house. The requirements for posting maneuvering information are found in 33 CFR 164.35. The maneuvering characteristics are to be representative of both normal load, normal ballast conditions, calm weather (wind 10 knots or less), no current, deep water (at least twice the vessel’s draft), and clean hull. At the bottom of the fact sheet the following statement shall be provided:

“WARNING”
The response of the (name of vessel) may be different from that listed above if any of the following conditions, upon which the maneuvering information is based, are varied:

(1) Calm weather – wind 10 knots or less, calm sea;
(2) No current;
(3) Water depth twice the vessel’s draft or greater;
(4) Clean hull; and
(5) Intermediate drafts or unusual trim.

(b) The posted characteristics shall consist of the following maneuvers:

(1) Turning Circle Diagram to both port and starboard.

- Time, distance, advance, transfer to alter course 90° with maximum power settings for either full or half speeds, or full and slow speeds.

- Vessels which have essentially the same turning characteristics to both port, and starboard may substitute a turning circle in one direction only, with a note stating the other direction to be essentially the same.

- Time and Distance to Stop the vessel from either full and half speeds while maintaining initial heading, and minimum rudder application.
- Table of Shaft RPM for a representative range of speeds should be provided for a vessel with a fixed pitch propeller.

- Table of Control Settings for a representative range of speeds for a vessel with a controllable pitch propeller.

- Table of Effective Speeds for auxiliary maneuvering devices such as bow thrusters. This table should show the range of speeds for which the unit can be used effectively.

Cite: 33 CFR 164.33(2)(i) & Charts and Publications
33 CFR 164.33(3)(ii)

1. Application

 (a) The provisions of this section apply to all self propelled vessels over 1600 gross tons when operating in the navigable waters of the United States, except the St. Lawrence Seaway.

2. Requirements

 (a) In addition to the requirements of SOLAS, a vessel must have a current copy of the “U.S. Coast Pilot”, and “Tidal Current Tables”, published by the National Oceanographic Service. Further detail is provided in 33 CFR 164.33.

Cite: 33 CFR 164.41 Electronic Position Fixing Devices

1. Application

 (a) The provisions of this section apply to all self propelled vessels over 1600 gross tons and calling at a port in the United States, including Alaska south of Cape Prince of Wales. Each vessel operated, owned, or bareboat chartered by the United States, State, or Political Subdivision, by a foreign nation, and not engaged in commerce is exempt from this requirement. Requirements for electronic position fixing devices are found in 33 CFR 164.41.

2. Devices
(a) A Type I or Type II Loran C Receiver meeting Part 2 (Minimum Performance Standards of the Radio Technical Commission for Marine Services (RTCM) Paper 12-78/DOD100. Each receiver installed on or after June 1, 1982 must have a label showing the name and address of the manufacturer, including the following statement: “This receiver was designed and manufactured to meet Part 2 (Minimum Performance Standards) of the RTCM MPS for Loran-C Receiving Equipment.”

(b) A Satellite Navigation Receiver with automatic acquisition of satellite signals, and position updates derived from satellite information.

(c) A system considered to meet the intent for availability, accuracy, and coverage for the U.S. Confluence Zone (CCZ) contained in U.S. “Federal Radio Navigation Plan” (Report No. DOD-No 4650.4-D or No. DOT-TSC-RSPA-80-16I).

D. Requirements in Addition to MARPOL Annexes

In order to facilitate reference, the applicable CFR cite is given for each entry.

ANNEX I

Cite: 33 CFR 151.27 Shipboard Oil Pollution Emergency Plan

For the issue of a Certificate of Inspection, the Shipboard Oil Pollution Emergency Plans (Reg. 37) outlined in IMO Res. MEPC.86(44) can only be approved by the U.S. Coast Guard (CG-533).

Cite: 33 CFR 155.310 Containment of Oil and Hazardous Material Cargo Discharge

Under those connections there must be a fixed container or enclosed deck area with a mechanical means of closing the drain for that containment which has a capacity:

- 1/2 bbl for lines no more than 51 mm (2 in)
- 1 bbl for lines more than 51 mm (2 in) up to 102 mm (4 in)
- 2 bbl for lines no less than 102 mm (4 in) up to 152 mm (6 in)
- 3 bbl for lines no less than 152 mm (6 in) up to 304 mm (12 in)
- 4 bbl for lines 304 mm (12 in) or more
Cite: 33 CFR 155.320 Fuel Oil and Bulk Lubricating Oil Discharge Containment

Under fill connections and vents there must be a fixed container or enclosed deck area with a mechanical means of closing the drain for that containment which has a capacity:

1/2 bbl for vessels 300 gross ton or more but less than 1600 gross tons.
1 bbl for vessels 1600 gross ton or more.

Cite: 33 CFR 155.380 Oily-water Separating Equipment, Bilge Alarm and Bilge Monitor Approval Standards

Oily-water separating equipment and oil content meters for bilge alarms are to be USCG approved equipment.

Cite: 33 CFR 155.450 Placard

Each machinery space must have a sign indicating that the discharge of oil is prohibited.

Cite: 33 CFR 155.780 Emergency Shutdown

Offshore Support vessels must have an emergency means of stopping transfers within a vessel.

Cite: 33 CFR 155.790 Deck Lighting

Offshore Support vessels must have a means of illuminating the deck in transfer operation work areas – 1.0 foot candle measured 0.91 m (3ft) above the deck – and at transfer connections – 5.0 foot candle measured 0.91 m (3ft) above the deck.

Cite: 33 CFR 155.800 Transfer Hoses

Transfer hoses must have burst pressure of at least 600 psi and four times the MAWP, which must be at least 10.3 bar (150 psi). Hose flanges must meet ANSI B16.5 or B16.24. The hoses must be marked with the MAWP, type of service, date of manufacture and the date of the last pressure test. The date of manufacture and the date of the last pressure test may be recorded in lieu of being marked on the hoses.

ANNEX II

Cite: 33 CFR 151.27 Shipboard Marine Pollution Emergency Plan for NLS

For the issue of a Certificate of Inspection, the Shipboard Marine Pollution Emergency Plans for Noxious Liquid Substances (NLS) (Reg. 16) outlined in IMO Res. MEPC.85(44) can only be approved by the U.S. Coast Guard (CG-533).

ANNEX III (no differences)
ANNEX IV (NOT ADOPTED) COMPARISON OF USCG RULES TO MARPOL

Cite: 33 CFR 159.53 Marine Sanitation Devices (MSDs)

All vessels must be installed with either an operable MSD which controls the discharged fecal coliform bacteria count to 200 per 100 ml (3.38 fl.oz) and the suspended solids to 150 mg/l, which is certified by the Commandant, USCG or with an operable MSD which retains the sewage on board.

ANNEX V

Cite: 33 CFR 151.51 Garbage Pollution – Applicability

Cite: 33 CFR 151.55 Garbage Pollution – Record Keeping Requirements

U.S. ships over 12.2 m (40 ft) must keep records of garbage disposal.

Cite: 33 CFR 151.57 Garbage Pollution – Waste Management Plans

U.S. ships over 12.2 m (40 ft) with galleys must have a waste management plan.

Cite: 33 CFR 151.59 Garbage Pollution – Placards

U.S. ships over 7.9 m (26 ft) must have placards describing prohibited waste discharges.

ANNEX VI

USCG policy with respect to the issue of MARPOL Annex VI certificates required to be carried aboard a vessel is contained in CG-543 Policy Letter 09-01.

Cite: 46 CFR 63.25-9 Incinerators

“Each incinerator installed on or after March 26, 1998 must meet the requirements of IMO Resolution MEPC.76(40). A Coast Guard Certificate of Approval is required for each incinerator. Incinerators in compliance with the following are considered to meet IMO Resolution MEPC.76(40):

- ISO 13617; or
- Both ASTM F 1323 and Annexes A1-A3 of IMO Resolution MEPC.76(40)
IV. REQUIREMENTS FOR OFFSHORE SUPPLY VESSELS CERTIFICATED UNDER SUBCHAPTER L, EXCEPT LIFTBOATS

Scope: This section specifies additional or different requirements that apply to Subchapter L OSV’s (except liftboats) certificated under Subchapter L enrolled or to be enrolled in the ACP. For OSVs of at least 6,000 GT ITC, additional requirements in Section V are to be followed.

Note: Subchapter L “Liftboats” is not included in this Section.

Table of Contents

Cite: A-1 Damage Stability IV-1
Cite: A-2 Carriage of Flammable or Combustible Liquid Cargoes in Bulk IV-1
Cite: A-3 Carriage of Noxious Liquid Substances in Bulk IV-1
Cite: A-5 Carriage of Offshore Workers IV-1
Cite: A-6 Means of Escape IV-2
Cite: A-7 Accommodations for Crew Members and Offshore Workers IV-2
Cite: A-8 Keel Cooler Installations IV-3
Cite: A-9 Liquid-Mud Systems IV-3
Cite: A-10 Dual Voltage Generators IV-3
Cite: A-10a Grounded Distribution System IV-4
Cite: A-11 Automation of Unattended Machinery Spaces IV-4
Cite: A-15 Fire Stations IV-4
Cite: A-16 Fire Monitors IV-4
Cite: A-1 Damage Stability

In addition to Section I/Cite: 3-3-1/3.1 for intact stability, OSVs are also to comply with the subdivision and damage stability requirements contained in either (a) IMO Res. MSC.235(82), as amended by MSC. 335 (90), section 3, or (b) 46 CFR 174.195, 174.200, 174.205, and 174.207.

Cite: A-2 Carriage of Flammable or Combustible Liquid Cargoes in Bulk

An OSV may carry the following in integral tanks:

1. Grade-D combustible liquids (having a flashpoint below 150°F and above 80°F), in quantities not to exceed 20 percent of the vessel’s deadweight, except that the vessel may carry drilling fluids and excess fuel oil, Grade-E (combustible liquid having a flashpoint of 150°F and above) as well as Grades-D, without limit.
2. Grade-E combustible liquids, in quantities not to exceed 20 percent of the vessel’s deadweight, except that the vessel may carry drilling fluids and excess fuel oil. Grade-D as well as Grade-E, without limit.
3. An OSV may carry the following in fixed independent tanks on deck: Grade-B (flammable liquid having a Reid vapor pressure under 14 pounds and over 8½ pounds) and lower-grade flammable and combustible liquids, in quantities not to exceed 20 percent of the vessel’s deadweight.
4. An OSV may carry hazardous materials in approved portable tanks. The portable tank may be filled or discharged aboard the vessel if authorized by and endorsement on the vessel’s Certificate of Inspection.

Cite: A-3 Carriage of Hazardous and Noxious Liquid Substances in Bulk

2. For hazardous locations, refer to cite II-1/45 of Supplement.

Cite: A-5 Carriage of Offshore Workers

1. Offshore worker means an individual carried aboard an OSV and employed in a phase of exploration, exploitation, or production of offshore mineral or energy resources served by the vessel; but it does not include the master or a member of the crew engaged in the business of the vessel, who has contributed no consideration for carriage aboard and is paid for services aboard.
2. Offshore workers may be carried aboard an OSV in compliance with Subchapter L. The maximum number of offshore workers authorized for carriage will be endorsed on the vessel's Certificate of Inspection; but in no case will the number of offshore workers authorized for carriage exceed 36.
 - For OSVs less than 6,000 GT ITC that desire to carry more than 36 Offshore Workers, an equivalency is to be established with USCG when a proposal is being
submitted to ABS. The proposed equivalency is to be in accordance with the process outlined in enclosure 4 of NVIC 02-95 Ch. 2.

- For OSVs of at least 6,000 GT ITC that desire to carry more than 36 Offshore workers, section V is to be followed.

(3) No more than 12 offshore workers may be carried aboard an OSV certificated under Subchapter L when on an international voyage, unless the vessel holds a valid passengership-safety certificate (Form CG-968) issued in compliance with the International Convention for the Safety of Life at Sea, 1974, as amended (SOLAS 74/83).

Cite: A-6 Means of Escape

(a) A vertical ladder ending at a deck scuttle may be the second means of escape if the:

(1) primary means of escape is a stairway or passageway;
(2) installation of another stairway or passageway is impracticable;
(3) scuttle is located where stowed deck cargo could not interfere;
(4) scuttle is fitted with a quick-acting release, and with a hold-back device to hold it open; and
(5) scuttle meets the requirements for location, strength, and height of coaming in the International Convention on Load Lines.

(b) Each vertical ladder must:

(1) Have rungs that are:
 (i) at least 410 mm (16 in) long;
 (ii) at most 300 mm (12 in) apart, uniform for the length of the ladder; and
 (iii) at least 180 mm (7 in) from the nearest permanent object in back of the ladder;
(2) Have at least 115 mm (4-1/2 in) of clearance above each rung;
(3) Be made of incombustible materials; and
(4) Have an angle of inclination with the horizontal, greater than 70° but not more than 90°.

(c) No means may be provided for locking any interior door giving access to either of the two required means of escape, except that a crash door or locking-device, capable of being easily forced in an emergency, may be employed if a permanent and conspicuous notice to this effect is attached to both sides of the door. A means may be provided for locking an exterior door to a deckhouse if the door is:

(1) Locked only by a key under the control of one of the OSV’s officers; and
(2) Always operable from the inside.

Cite: A-7 Accommodations for Crew Members and Offshore Workers

The following requirements apply to accommodations for offshore workers on each vessel:

(1) Each offshore worker aboard must be provided with adequate fixed seating. The width of each seat should be at least 460 mm (18 in). The spacing of fixed seating must be
sufficient to allow ready escape in case of fire or other emergency. The following are minimal requirements:

(i) aisles 4.6 m (15 ft) in length or less must not be less than 610 mm (24 in) wide.
(ii) aisles more than 4.6 m (15 ft) in length must not be less than 760 mm (30 in) wide.
(iii) where the seating is in rows, the distance from seat front to seat front must not be less than 760 mm (30 in).

(2) If the intended operation of a vessel is to carry offshore workers aboard for more than 24 hours, quarters for them must be provided. Each stateroom for use by them must:

(i) berth no more than six workers;
(ii) have clear headroom of at least 1.9 m (6 ft 3 in); and
(iii) contain at least 1.9 m² (20 ft²) of deck and at least 4 m³ (140 ft³) of space for each worker accommodated. The presence in a stateroom of equipment for use by the occupants does not diminish the area or volume of the room.

(3) There must be at least one toilet, one washbasin, and one shower or bathtub for every eight or fewer offshore workers who do not occupy a stateroom to which a private or a semiprivate facility is attached.

OSVs are not required to be outfitted with a Hospital Space required by Section III Cite B.8 of the U.S. Supplement.

Cite: A-8 Keel Cooler Installations

Fillet welds may be used in the attachment of channels and half-round pipe sections to the bottom of the vessel.

Cite: A-9 Liquid-Mud Systems

Liquid-mud piping systems may use resiliently seated valves of Category A to comply with Cite 4-6-2/5.1.1 of this Supplement.

Cite: A-10 Dual-Voltage Generators

If a dual-voltage generator is installed on an OSV the neutral of the dual-voltage system must be solidly grounded at the switchboard’s neutral bus and be accessible for checking the insulation resistance of the generator to the ground. Resistance or impedance grounding in lieu of solid grounding must be approved by the Coast Guard Marine Safety Center.

Any Current flow due to a ground fault may not flow through a hazardous (classified) location.

Grounded neutral and resistance or impedance grounded AC systems must have a suitably sensitive ground detection system which indicates current in the ground connection, is able to withstand the maximum fault current without damage, and provides continuous indication of
circuit status to ground. The system must provide for comparison of indications under fault conditions with those normal conditions.

Dual voltage DC systems must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at least 150 percent of neutral rating and indicates polarity of the fault.

Cite: A-10a Grounded Distribution System

If a grounded distribution system is provided, there must be only one connection to ground, regardless of the number of power sources.

Cite: A-11 Automation of Machinery Spaces

OSVs intended to operate with automated machinery spaces are to comply with the ABS SVR requirements for class notation ACCU as well as other applicable requirements of this Supplement. See Cites 4-9-1/7 through 4-9-3/15.5.2 of Section I.

Cite: A-15 Fire Stations

Each outlet at a fire hydrant must be at least 38 mm (1-1/2 in) in diameter and, to minimize the possibility of kinking, must be fitted so that no hose leads upward from it.

Each fire hydrant must have a fire hose 15.2 m (50 ft) in length, with a minimum diameter of 38 mm (1-1/2 in), connected to an outlet, for use at any time.

A suitable hose rack or other device must be provided for each fire hose. Each rack on a weather deck must be placed so as to protect its hose from heavy weather.

Cite: A-16 Fire Monitors

When a fire monitor is connected to the fire main system, it must be led from the discharge manifold of the fire pump. Each fire monitor must be fitted with a shut-off valve at the monitor and at the connection to the fire pump discharge manifold.
V. REQUIREMENTS FOR OFFSHORE SUPPLY VESSELS
CERTIFICATED UNDER SUBCHAPTER L AND AT LEAST 6,000 GT ITC

Scope: This section specifies additional or different requirements that apply to Subchapter L OSV’s (except liftboats) that are at least 6,000 GT ITC certificated under Subchapter L enrolled or to be enrolled in the ACP.

Note: Subchapter L “Liftboats” is not included in this Section.

Table of Contents

Cite: 46 CFR 111.05-20 Grounded Distribution Systems V-1
Cite: 46 CFR 111.106 Hazardous Locations on OSVs V-1
Cite: 46 CFR 125.105 International Certificates for OSVs of at least 6,000 GT ITC V-6
Cite: 46 CFR 125.110 Carriage of Flammable or Combustible Liquid Cargoes in Bulk V-6
Cite: 46 CFR 125.125 Carriage of Noxious Liquid Substances in Bulk by OSVs of at least 6,000 GT ITC V-6
Cite: 46 CFR 127.225 Structural Fire Protection V-8
Cite: 46 CFR 127.230 Subdivision and Stability V-8
Cite: 46 CFR 127.600 Construction and Arrangements for OSVs Carrying More than 36 Offshore Workers V-8
Cite: 46 CFR 128.310 Fuel V-9
Cite: 46 CFR 129.570 Overfill Protection V-9
Cite: 46 CFR 132.100 & 132.200 Fire Protection Equipment V-10
Cite: 46 CFR 132.365 Emergency Outfits V-10
Cite: 46 CFR 132.390 Added Requirements for Carriage of Flammable or Combustible Cargo V-11
Cite: 46 CFR 111.05-20 Grounded Distribution Systems

For OSVs of at least 6,000 GT ITC that are designed to carry flammable or combustible liquids with a closed-cup flashpoint not exceeding 60 degrees Celsius, grounding of the neutral for alternating current power networks of 3,000 volts (line to line) or more is permitted, provided that any possible resulting current does not flow directly through any hazardous locations.

Cite: 46 CFR 111.106 Hazardous Locations on OSVs

This section applies to OSVs of at least 6,000 GT ITC, as defined by Subchapter L.

A. General requirements.
(a) Electrical installations in hazardous locations, where necessary for operational purposes, must be located in the least hazardous location practicable.
(b) Electrical installations in hazardous locations must comply with the standards listed in paragraphs (b)(1), (2), or (3) of this section.
(1) NFPA 70 Articles 500 through 504. Equipment identified for Class I locations must meet the provisions of Sections 500.7 and 500.8 of NFPA 70 and must be tested and listed by an independent laboratory to any of the following standards:
 (i) ANSI/UL 674, ANSI/UL 823, ANSI/UL 844, ANSI/UL 913, ANSI/UL 1203, UL 1604 (Division 2) and/or ANSI/UL 2225.
 (ii) FM Approvals Class Number 3600, Class Number 3610, Class Number 3611, Class Number 3615, Class Number 3620, or any combination of these.
See Article 501.5 of NFPA 70 for use of Zone equipment in Division designated spaces.
(2) NFPA 70 Article 505. Equipment identified for Class I locations must meet the provisions of Sections 505.7 and 505.9 of NFPA 70 and be tested and listed by an independent laboratory to the ANSI/ISA Series of standards incorporated in NFPA 70. See Article 505.9(c)(1) of the NFPA 70 for use of Division equipment in Zone designated spaces.
(3) IEC 60092–502, with the following exceptions:
 (i) Section B of this cite applies in lieu of Clause 7.3.1.
 (ii) Section D of this cite applies in lieu of Clause 4.2.
 (iii) Section C of this cite applies in lieu of Clauses 4.1.5 and 8.4.
 (iv) Section F(b) of this cite applies in lieu of Clause 4.1.4 for enclosed areas containing devices handling hydrocarbons.
 (v) Section E of this cite applies in lieu of Clause 4.3.2.
 (vii) Equipment must be tested by an Ex Testing Laboratory and certified by an Ex Certification Body under the IECEx System, in lieu of Clause 6.3. Note to § 111.106–3(b): System components that are listed or certified under paragraph (b)(1), (b)(2) or (b)(3) of this section must not be combined in a manner that would compromise
system integrity or safety. Multi-certificating OSVs of at least 6,000 GT ITC shall follow the requirements in Section 14-8-3/13.

(c) As an alternative to paragraph (b)(1) of this section, electrical equipment that complies with the provisions of NFPA 496 (2008) is acceptable for installation in Class I, Divisions 1 and 2. When equipment meeting this standard is used, it does not need to be identified and marked by an independent laboratory. The Commanding Officer, Marine Safety Center (MSC) will evaluate equipment complying with this standard during plan review. It is normally considered acceptable if a manufacturer’s certification of compliance is indicated on a material list or plan.

(d) Equipment listed or certified to ANSI/ISA 60079–18 or IEC 60079–18:2009, respectively, is not permitted in Class I Special Division 1 or Zone 0 hazardous location, unless the encapsulating compound of Ex “ma” protected equipment is not exposed to, or has been determined to be compatible with, the liquid or cargo in the storage tank.

(e) Lighting circuits serving flameproof or explosion-proof lighting fixtures in an enclosed hazardous space or room must—
 (1) Have at least two lighting branch circuits;
 (2) Be arranged so that there is light for relamping any de-energized lighting circuit;
 (3) Not have the switch and overcurrent device within the space for those spaces containing explosion-proof or flameproof lighting fixtures; and
 (4) Have a switch and overcurrent protective device that must open all ungrounded conductors of the circuit simultaneously.

(f) Submerged pump motors that do not meet the requirements of 46 CFR 111.105–31(d), installed in tanks carrying flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F), must receive concept approval by the Commandant (CG–ENG) and plan approval by the Commanding Officer, MSC.

(g) Wiring materials and cables in hazardous locations must meet the construction and testing requirements in Section B of this cite.

(h) Internal combustion engines installed in Divisions 1 and 2 (Zones 1 and 2) must meet the provisions of ASTM F2876–10.

(i) Cofferdams are required to separate enclosed spaces adjacent to integral cargo storage tanks.

(j) The cargo pumping/piping systems must be arranged independently from all other systems. Cargo transfer pumps and piping (including fill, discharge, vent, and sounding piping) must not be located in or pass through any accommodation, service, or machinery spaces.

B. Cable and wiring.

(a) Cable and wiring in hazardous locations must meet the cable construction and testing provisions of IEEE 1580; UL 1309; MIL–DLT–24640C; MIL–DLT–24643C; or IEC 60092–350:2008 and IEC 60092–353:2011, including the respective flammability tests contained therein, and must be of a copper-stranded type.

(b) Type MC cables, when used, must meet the requirements in 46 CFR 111.60–23.

(c) For intrinsically safe systems under the standards cited in Sections A(b)(1) and A(b)(2) of this cite, the wiring methods must meet Section 504.30 of NFPA 70. For intrinsically safe systems under the standards cited in Section A(b)(3) of this subpart, the installation and wiring must meet Clause 7, except for Clause 7.3.1, of IEC 60092–502.

C. Classification of adjacent spaces with access to hazardous locations.
(a) Hazardous location classification of adjacent spaces must comply with Clause 12.5 of either API RP 500 or API RP 505.

(b) A differential pressure-monitoring device or a flow-monitoring device, or both, must be provided for monitoring the pressurization of spaces having an opening into a more hazardous zone. A running fan motor or a fan-rotation monitoring device indicator is insufficient to satisfy this requirement.

(c) During initial startup, or after shutdown of the pressurization or ventilation system, and regardless of the classification of the hazardous location, the space must be ventilated or purged, followed by pressurization or ventilation of the space, before any electrical apparatus within the space may be energized. The atmosphere is considered non-hazardous when the concentration of explosive gases or vapors is below 30 percent of the lower explosive limit at all points in the space, equipment enclosures and vent ducts.

(d) Only electrical equipment and devices that are necessary for the operational purposes of the space may be installed in spaces made nonhazardous by the methods allowed in this section.

D. Classification of flammable or combustible cargo storage and handling locations.

(a) This section applies to locations surrounding the storage and handling locations of flammable and combustible liquid cargoes with closed-cup flashpoints not exceeding 60 °C (140 °F).

(b) The following are Class I Special Division 1 (Zone 0) locations:

1. Enclosed areas containing devices handling cargoes, such as cargo handling or pump rooms, except as modified by Section F of this cite.
2. The interiors of cargo storage tanks, slop tanks, any pressure-relief pipework or other venting systems for cargo and slop tanks, pipes and equipment containing the cargo or developing flammable gases or vapors.
3. Areas on an open deck, or a semi-enclosed space on an open deck, within 0.5 meters of any cargo storage tank outlet, cargo gas or vapor outlet, ullage opening, sounding pipe, cargo tank opening for pressure release, or cargo storage tank pressure or vacuum valve provided to permit the flow of small volumes of gas or vapor mixtures caused by thermal variation.
4. Areas on an open deck, or semi-enclosed spaces on open deck, within 0.5 meters of any cargo handling or pump room entrance, or cargo ventilation handling or pump room ventilation inlet or outlet.
5. Areas in the vicinity of any cargo vent outlet for free flow of large volumes of vapor mixtures during cargo loading and discharging of storage tanks, within a vertical cylinder of unlimited height, of 1 meter radius centered upon the vent outlet, and within a hemisphere of 1-meter radius below the vent outlet.
6. Areas in the vicinity of any cargo high-velocity vent outlet during cargo loading and discharging of storage tanks, within a vertical cylinder of unlimited height, of 0.5 meters radius centered upon the vent outlet, and within a hemisphere of 0.5 meters radius below the vent outlet.

(c) The following are Class I Division 1 (Zone 1) locations:

1. Areas on an open deck, or a semi-enclosed space on an open deck, that are 2.5 meters beyond the Class I Special Division 1 (Zone 0) areas cited in paragraphs (b)(3) and (4) of this section.
2. Areas on an open deck, or a semi-enclosed space on an open deck, that are within 3 meters of any cargo manifold valve, cargo valve, cargo pipe flange, cargo tank hatch, sight port, tank cleaning opening, and opening into cofferdams or other Zone 1 spaces.
(3) Regardless of the level of natural ventilation, areas on an open deck above the tank top of each cargo tank extending out 3 meters beyond the tank top boundaries of each cargo tank, up to a height of 2.4 meters above the deck.

(4) Areas on an open deck within spillage coamings surrounding cargo manifold valves extending 3 meters beyond the boundaries of the spillage coamings, up to a height of 2.4 meters.

(5) A void space or an enclosed space immediately above, below or adjacent to an integral cargo storage tank, including cofferdams and permanent (for example, segregated) ballast tanks adjacent to integral cargo storage tanks.

(6) A hold space containing an independent cargo storage tank.

(7) Compartments for cargo transfer hoses.

(8) Enclosed or semi-enclosed spaces in which pipes containing cargoes are located.

(9) Areas 7.5 meters beyond the cylinder and 7.5 meters beyond the hemisphere of the Class I Special Division 1 (Zone 0) hazardous locations cited in paragraph (b)(5) of this section.

(10) Areas 5.5 meters beyond the cylinder and 5.5 meters beyond the hemisphere of the Class I Special Division 1 (Zone 0) hazardous locations cited in paragraph (b)(6) of this section.

(d) The following are Class I Division 2 (Zone 2) locations:

(1) Areas on an open deck, or a semi-enclosed space on an open deck, that are 1.5 meters beyond the Class I Division 1 (Zone 1) areas cited in paragraphs (c)(1) through (4) of this section.

(2) Areas 1.5 meters beyond the cylinder and 1.5 meters beyond the hemisphere of the Class I Special Division 1 (Zone 1) hazardous locations cited in paragraph (c)(9) of this section.

(3) Areas 4 meters beyond the cylinder and 4 meters beyond the hemisphere of the Class I Division 1 (Zone 1) hazardous locations cited in paragraph (c)(10) of this section.

(4) Enclosed spaces beyond the open deck areas cited in paragraph (c)(3) of this section that are below the level of the main deck and have an opening onto the main deck or at a level less than 0.5 meters above the main deck, unless—

(i) The entrances to such spaces, including ventilation inlets and outlets, are situated at least 5 meters from the closest integral cargo tank bulkhead and at least 10 meters measured horizontally from any integral cargo tank outlet or gas or vapor outlet; and

(ii) The spaces are mechanically ventilated.

E. Classification of storage and handling locations of heated combustible liquid cargoes.

(a) This section applies to locations surrounding the storage and handling of combustible liquid cargoes with closed cup flashpoints exceeding 60 °C (140 °F).

(b) The interiors of independent storage tanks and integral tanks containing cargoes with closed-cup flashpoints of 60 °C (140 °F) or higher and heated to within 15 °C of their flashpoint are considered Class I Special Division 1 (Zone 0). The hazardous locations in Section D of this cite apply.

F. Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes.

(a) This section is applicable to enclosed areas containing devices handling flammable or combustible liquid cargoes with closed-cup flashpoints not exceeding 60 °C (140 °F).
(b) Enclosed hazardous locations containing devices that handle cargoes must comply with Clauses 6.3.1.2 of API RP 500 and 6.6.1.2 of API RP 505. Ventilation must not be used to reduce the classification of such areas.

(c) Cargo pump rooms must be isolated from all sources of vapor ignition by gastight bulkheads. The gastight bulkhead between the pump room and the pump-motor compartment may be pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are fitted with fixed oil reservoir gland seals, or pressure grease seals where they pass through the gastight bulkheads. Other types of positive pressure seals must be specially approved by the Commandant (CG–ENG). Access to a cargo handling enclosed area or room must be from the open deck.

(d) Fixed lights in cargo pump rooms or enclosed cargo handling areas must meet the arrangement and construction requirements in 46 CFR 111.105–31(g).

(e) A cargo handling area or pump room that precludes the lighting arrangement of paragraph (d) of this section, or where the lighting arrangement of paragraph (d) of this section does not give the required illumination level, must have explosion proof, flameproof (Ex “d”) or flameproof-increased safety (Ex “de”) lighting fixtures.

G. Ventilation of hazardous locations.

(a) The ventilation design principles must comply with Clauses 8.1.3, 8.2, and 8.3 of IEC 60092–502. The word “mechanical,” as used in this section, is interchangeable with the word “artificial” used in IEC 60092–502.

(b) A ventilation system must—

1. Be positioned so as not to recycle vapors from ventilation discharges;
2. Have its operational controls outside the ventilated space, if the system is mechanical; and
3. Have a protective metal screen of not more than 13 mm (0.512 in.) square mesh on each ventilation intake and exhaust opening.

(c) The mechanical ventilation of enclosed flammable or combustible liquid cargo handling or cargo pump rooms must be sufficient to effect a minimum complete 30 air changes per hour based on the volume of the pump room and associated trunks up to the deck at which access from the weather is provided. The power ventilation system must be designed to remove vapors from the bottom of the space at points where concentrations of vapors may be expected.

(d) The following spaces must have a supply-type mechanical ventilation system capable of providing at least 8 air changes per hour:

1. Each space that contains electric motors for cargo handling equipment.
2. Each cargo control station.

H. Piping: electrical bonding.

(a) Tanks or piping systems that are separated from the hull structure by thermal isolation must be electrically bonded to the hull structure by a method under paragraph (c) of this section.

(b) A pipe joint or a hose connection fitting that has a gasket must be electrically bonded by a method under paragraph (c) of this section that bonds—

1. Both sides of the connection to the hull structure; or
2. Each side of the connection to the other side.

(c) An electrical bond must be made by at least one of the following methods:

1. A metal bonding strap attached by welding or bolting;
(2) Two or more bolts that give metal-to-metal contact between the bolts and the parts to be bonded; or
(3) Other metal-to-metal contact between adjacent parts under designed operating conditions.

Cite: 46 CFR 125.105 International Certificates for OSVs of at least 6,000 GT ITC

An OSV of at least 6,000 GT ITC must obtain and maintain the following international certificates as a prerequisite to obtaining a Certificate of Inspection:
(b) Cargo Ship Safety Equipment Certificate in accordance with SOLAS, 1974, as amended.
(c) Safety Management Certificate in accordance with SOLAS, 1974, as amended.
(d) International Oil Pollution Prevention Certificate in accordance with the International Convention for the Prevention of Pollution at Sea, as amended (MARPOL 73/78).
(e) International Air Pollution Prevention Certificate in accordance with MARPOL 73/78.

Cite: 46 CFR 125.110 Carriage of Flammable or Combustible Liquid Cargoes in Bulk

(1) On an OSV of at least 6,000 GT ITC, tanks authorized for carriage of oil, including drilling fluid containing oil, must comply with double hull requirements stated in 33 CFR 157.10d. The requirements found in 46 CFR 132.390(b) do not apply to the carriage and transfer of excess fuel oil from the fuel supply tanks of an OSV.

Cite: 46 CFR 125.125 Carriage of Noxious Liquid Substances in Bulk by OSVs of at least 6,000 GT ITC

(a) Except as provided by this section, no OSV of at least 6,000 GT ITC may carry a noxious liquid substance (NLS) in bulk without the approval of the Commandant (CG-ENG).
(b) An OSV of at least 6,000 GT ITC holding a valid Certificate of Fitness or a International Pollution Prevention Certificate for the Carriage of Noxious Liquid Substances in Bulk in accordance with the provisions of IMO Resolution A.673(16), may carry in integral and fixed independent tanks—
(1) Drilling fluids, including muds, brines, and salts, subject to paragraph (c) of this section and Section IV item A-2; and
(2) Additional NLSs that are—
 (i) Hazardous and noxious liquids listed in Appendix 1 of IMO Resolution A.673(16);
 (ii) Products that may be carried on a type 3 ship, as defined by the IBC Code, except that cargoes with an “S” designation in the hazard column (column d) in Chapter 17 of the IBC Code may only be carried if they are not designated as toxic products as per section 15.12 of that Code; or
 (iii) Not listed in Chapter 17 of the IBC Code, but otherwise meet the specific carriage requirements established by the Commandant (CG-ENG).
(c) An OSV of at least 6,000 GT ITC that meets the stability and cargo tank location requirements—

(1) Of IMO Resolution A.673(16) may carry any of those cargoes listed in paragraph (b) of this section up to a maximum aggregate quantity of 800 cubic meters or 40 percent of the vessel's deadweight calculated with a cargo density of 1.0, whichever is less; or

(2) Of a well stimulation vessel in accordance with IMO Resolution A.673(16) may carry—

(i) In unlimited quantity, those combustible cargoes in paragraph (b)(1) of this section, as defined in 46 CFR 30.10-15; and

(ii) In quantities not to exceed 20 percent of the vessel's deadweight, drilling fluids of Grade C, as defined in 46 CFR 30.10-22, and those cargoes in paragraph (b)(2) of this section.

d) Each OSV carrying NLS in bulk in integral tanks or fixed independent tanks must maintain a Cargo Record Book and have on board an approved Shipboard Marine Pollution Emergency Plan in accordance with Annex II to MARPOL 73/78.

e) An OSV is not allowed to discharge NLS residues into the sea. This must be stated in the approved Procedures and Arrangements Manual required by Regulation 14 of Annex II to MARPOL 73/78. The Manual may, in lieu of the requirements as outlined in Annex II Appendix 4, be approved with the following changes:

(1) Section 2.6 may read “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea, and is not equipped with an underwater discharge outlet.”

(2) Section 2.8 may be marked “N/A”.

(3) Section 2.9 may read, “This vessel is not equipped with a tank washing system.”, unless the vessel is equipped with a tank washing system.

(4) Section 3.3 may read, “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea and is not equipped with a tank stripping system.”, unless the vessel is equipped with a tank stripping system.

(5) Section 4.4.2 may read, “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea and is not equipped with a tank stripping system.”, unless the vessel is equipped with a tank stripping system.

(6) Section 4.4.3 may read, “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea.”

(7) Section 4.4.6 should refer the reader to appropriate compatibility guides.

(8) Section 4.4.7 may read, “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea. All NLS residues must be discharged to an appropriate reception facility.”

(9) Section 4.4.8 may read, “This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea.”

(10) Section 4.4.9 may read, “All cleaning agents and additives must be treated as substances of their assigned NLS category. This vessel is prohibited from discharging Noxious Liquid Substance (NLS) residues to the sea. All NLS residues must be discharged to an appropriate reception facility.”

(11) Section 4.4.10 may be marked “N/A”.

V - 7
(f) An OSV of at least 6,000 GT ITC may transfer the following materials to and from a portable tank by following the procedures in 46 CFR 98.30, including 46 CFR 98.30-17 (b)(2):
(1) The materials in 46 CFR 98.30-5.
(2) Hazardous and noxious liquids listed in appendix 1 of IMO Resolution A.673(16).
(3) Products which may be carried on a type 2 or 3 ship, as defined by the IBC Code.
(4) Products which may be carried with a cargo containment system II or III, as defined by Table 1 to 46 CFR part 153.

(g) An OSV of at least 6,000 GT ITC may not transfer Certain Dangerous Cargoes, as defined by 33 CFR 160.204, to or from a portable tank.

Cite: 46 CFR 127.225 Structural Fire Protection

Only Method IC shall be used.

In addition, OSVs of at least 6,000 GT ITC must comply with the following:
(1) The exterior boundaries of superstructures, except wheelhouses, containing accommodation, service and control spaces, facing the cargo area must be constructed of steel and comply with 46 CFR 32.56–20, 32.56–21, and 32.56–22.
(2) Cargo pump rooms must be separated from accommodation spaces, service spaces, and control stations by A–60 divisions.
(3) Cargo pump rooms must be separated from machinery spaces of category A by A–0 divisions.

Cite: 46 CFR 127.230 Subdivision and Stability

An OSV of at least 6,000 GT ITC that is of at least 80 meters in length is not required to comply with 46 CFR part 174, subpart G.

Cite: 46 CFR 127.600 Construction and Arrangements for OSVs Carrying More than 36 Offshore Workers

A. Damage stability requirements.
(a) Each OSV that is authorized to carry more than 240 persons must comply with the following provisions of SOLAS, 1974, as amended, as though the OSV is a passenger ship and the offshore workers are considered as passengers: chapter II–1, parts B–1, B–2, and B–4, and regulation II–1/35–1 (incorporated by reference, see § 125.180).
(b) Each OSV that is authorized to carry less than 240 persons must comply with the provisions of chapter II–1 of SOLAS, 1974, as amended:
(1) Part B–1 and regulation II–1/35–1 of SOLAS, 1974, as amended, as though the OSV is a passenger ship and the offshore workers are considered as passengers, except that
(i) The required subdivision index used must be the R value calculated according to regulation II–1/6.2.3 of SOLAS, 1974, as amended, multiplied by the factor F, where:

\[F = \frac{(N + 720)}{960} \]
N = total number of persons authorized; and
(ii) Compliance with regulations II–1/8 and II–1/8–1 of SOLAS, 1974, as amended, is not required.

(2) Parts B–2 and B–4 as though the OSV is a cargo ship and the offshore workers are considered as crew, except that regulations II–1/9, II–1/13, II–1/19, II–1/20, and II–1/21 of SOLAS, 1974, as amended, must be applied as though the OSV is a passenger ship.

B. Marine engineering requirements.
Steering gear on OSVs authorized for carriage of more than 240 persons must comply with regulation II–1/29.6.1.1 of SOLAS, 1974, as amended in lieu of SOLAS regulation II–1/29.6.1.2.

C. Electrical installation requirements.
Electrical installations must comply with regulation II—1/42 of SOLAS, 1974, as amended in lieu of regulation II–1/43.

D. Fire-protection requirements.
(a) Except as provided in this section, each OSV must comply with the fire protection provisions of chapter II–2 of SOLAS, 1974, as amended applicable to passenger vessels carrying more than 36 passengers.
(b) OSVs authorized for carriage of 240 or fewer persons may comply with the fire-protection provisions of chapter II–2 of SOLAS, 1974, as amended, applicable to passenger vessels carrying not more than 36 passengers but need not comply with regulations II–2/21 and II–2/22.

E. Bulk liquid cargo limitations.
Notwithstanding Cite: A-2 above, no OSV carrying more than 240 total persons may carry flammable or combustible liquid cargoes of Grade D or higher in bulk.

Cite: 46 CFR 128.310 Fuel

OSVs of at least 6,000 GT ITC.
(1) Except as provided by paragraph (2) of this section, each internal combustion engine installed on an OSV of at least 6,000 GT ITC, whether for main propulsion or for auxiliaries, must be driven by a fuel having a flashpoint not lower than 60°C (140°F) as determined by ASTM D 93.
(2) The use of a fuel with a flashpoint lower than 60°C (140°F) must be specifically approved by the Commandant (CG–ENG), except in an engine for a gasoline-powered rescue boat or emergency generator.

Cite: 46 CFR 129.570 Overfill Protection

This section applies to OSVs of at least 6,000 GT ITC.
(1) Each cargo oil tank with a capacity of 1,000 or more cubic meters (approximately 6,290 barrels) must have one overfill device that is permanently installed on each oil tank, with an intrinsically safe high-level alarm that meets the requirements of this section.

(2) The high-level alarm and tank overfill alarm required by paragraph (1) of this section must—
 (a) Be independent of each other;
 (b) Alarm in the event of loss of power to the alarm system or failure of electrical circuitry to the tank level sensor; and
 (c) Be able to be checked at the tank for proper operation prior to each transfer or contain an electronic self-testing feature that monitors the condition of the alarm circuitry and sensor.

(3) The high-level alarm required by paragraph (1) of this section must—
 (a) Alarm before the tank overfill alarm, but before the tank capacity goes below 95 percent;
 (b) Be appropriately marked at the indicator panel; and
 (c) Have audible and visible alarm indications that can be seen and heard on the vessel where oil transfer is controlled.

(4) The tank overfill alarm required by paragraph (1) of this section must—
 (a) Be independent of the oil gauging system;
 (b) Alarm early enough to allow the person in charge of transfer operations to stop the transfer operation before the oil tank overflows;
 (c) Be appropriately marked at the indicator panel; and
 (d) Have audible and visible alarm indications that can be seen and heard on the vessel where oil transfer is controlled and in the cargo deck area.

Cite: 46 CFR 132.100 & 132.200 Fire Protection Equipment

For OSVs of at least 6,000 GT ITC, the vessel shall have—
 (1) Two fire pumps, with each capable of delivering water simultaneously from the two highest outlets at a pitot tube pressure of approximately 75 psi;
 (2) Fire hoses and nozzles must comply with 46 CFR 34.10-10; and
 (3) The number and type of portable and semi-portable fire extinguishers must comply with 46 CFR 34.50.

Cite: 46 CFR 132.365 Emergency Outfits

Two emergency outfits, stored for use in widely separated, accessible locations, are required on all OSVs of at least 6,000 GT ITC that have cargo tanks that exceed 15 feet in depth, measured from the tank top to the lowest point at which cargo is carried.

Each emergency outfit must have on board the following equipment:
 (1) One pressure-demand, open circuit, self-contained breathing apparatus, approved by the Mine Safety and Health Administration and by the National Institute for Occupational Safety and Health and having at a minimum a 30-minute air supply, a full facepiece, and a spare charge.
 (2) One lifeline with a belt or a suitable harness.
(3) One Type II or Type III flashlight constructed and marked in accordance with ASTM F1014—02.
(4) One fire axe.
(5) One pair of boots and gloves of rubber or other electrically non-conducting material.
(6) One rigid helmet that provides effective protection against impact.
(7) One set of protective clothing of material that will protect the skin from the heat of fire and burns from scalding steam. The outer surface must be water resistant.

Lifelines must be of steel or bronze wire rope. Steel wire rope must be either inherently corrosion resistant or made so by galvanizing or tinning. Each end must be fitted with a hook with keeper having a throat opening that can be readily slipped over a 5⁄8-inch bolt. The total length of the lifeline must be dependent upon the size and arrangement of the vessel, and more than one line may be hooked together to achieve the necessary length. No individual lifeline may be less than 50 feet in length. The assembled lifeline must have a minimum breaking strength of 1,500 pounds.

Cite: 46 CFR 132.390 Added Requirements for Carriage of Flammable or Combustible Cargo

OSVs of at least 6,000 GT ITC intended for carriage of flammable or combustible liquid cargoes in bulk must comply with the following:

(1) Cargo tanks containing flammable or combustible liquids must not be located beneath the accommodations or machinery space. Separation by cofferdams is not acceptable for meeting this requirement.
(2) Except for OSVs complying with paragraph (3)(a) of this section, each OSV must carry at least two approved semi-portable dry chemical fire extinguishers for the protection of all weather deck areas within 10 feet (3 m) of any tank openings, pumps, flanges, valves, vents, or loading manifolds. Each extinguisher must have—
 (a) A minimum capacity of 135 kg. If the protected area exceeds 90 m², additional extinguishers must be provided to supply a total combined capacity of dry chemical in kilograms equal to the total combined protected area in square meters multiplied by 3;
 (b) A minimum flow rate of 3 kg/min from each discharge hose;
 (c) A sufficient number of discharge hoses of adequate length to protect the areas required above without moving any of the extinguishers; and
 (d) The frame or support for each semi-portable dry chemical fire extinguisher welded or otherwise permanently attached to the vessel’s structure.
(3) Each OSV with fixed cargo tanks that have an aggregate capacity of 3,000 cubic meters or more intended for the carriage of flammable or combustible liquids with a closed-cup flashpoint of 60°C or below must have:
 (a) An approved fixed-deck foam system arranged as follows:
 (i) If the flammable or combustible liquid tanks extend vertically to the weather deck, the foam system must comply with §§ 34.20–10 and 34.20–15 of this chapter, and protect the entire weather deck cargo area, including any tank openings, pumps, flanges, valves, vents, or loading manifolds. If petroleum products are carried, the minimum foam system discharge rate in liters per minute must be determined by
multiplying the total cargo deck area by 6 lpm/m². If polar solvent cargoes are carried, the minimum foam system discharge rate in liters per minute must be determined by multiplying the total cargo deck area by 10 lpm/m², unless the approved foam system design manual specifies a different rate for the cargoes carried.

(ii) If the flammable or combustible liquid tanks do not extend vertically to the weather deck, the foam system must be capable of protecting all weather deck areas within 10 feet (3 m) of any tank openings, pumps, flanges, valves, vents, or loading manifolds. The foam system must consist of at least one hoseline, and either fixed-foam monitors or fixed-foam nozzles that provide foam coverage of all required areas. The minimum foam system discharge rate must be calculated in accordance with paragraph (d)(1)(i) of this section, using the combined horizontal area of all parts of the deck requiring protection, instead of the total deck area.

(iii) All foam liquid concentrate must be compatible with all flammable or combustible liquids carried.

(iv) Sufficient foam liquid concentrate must be carried to allow operation of the system at its maximum discharge rate for at least 20 minutes.

(b) A fixed-gas fire-suppression system complying with § 34.05–5(a)(4) of this chapter, or other approved fire-extinguishing system determined acceptable by the Commandant, for the protection of any accessible below-deck cargo pump rooms or other spaces that have tank openings, pumps, flanges, valves, or loading manifolds associated with tanks carrying flammable or combustible liquids with a closed cup flashpoint of 60°C or below.
VI. GUIDANCE AND REFERENCES

USPHS (Application of PHS Publication No. 393)

Reference 1 (Note: For information only; USCG and Class have no requirements or involvement; see below how PHS 393 applies to U.S. Flag.)

A. The ship must meet the definition of “vessel” in Section 1250.3(m) of Title 21 of the Code of Federal Regulations (21 CFR 1250.3(m)):

Any passenger-carrying, cargo, or towing vessel exclusive of:

1. fishing boats including those used for shell-fishing
2. tugs which operate only locally in specific harbors and adjacent waters
3. barges without means of self-propulsion
4. construction-equipment boats and dredges, and
5. sand and gravel dredging and handling boats”

The “PHS-393” USPHS/FDA Handbook on Sanitation of Vessel Construction applies to U.S. flagged conveyances that meet the “vessel” definition and operate in “interstate traffic” as defined in 21 CFR 1250.3(h) in B. below. Inspection and vessel blueprint review is done at the discretion of the FDA district office where the shipyard is located or the headquarters office of the vessel owner/operator is located depending on available resources.

Location of the appropriate FDA district office may be found at the following web address: http://www.fda.gov/ora/inspect_ref/iom/iomoradir.html#orafield.

B. In order to fall under FDA jurisdiction the ship must operate in “interstate traffic” as defined in 21 CFR 1250.3(h): “The movement of any conveyance or the transportation of persons or property, including any portion of such movement or transportation which is entirely within a state or possession (i) from a point of origin in any state or possession to a point of destination in any other state or possession, or (ii) between a point of origin and a point of destination in the same state or possession but through any other state, possession or contiguous foreign country.” There are certain exclusions that apply to this definition.

C. USPHS Handbook on Sanitation apply to U.S. flagged vessels that meet the “vessel” and “interstate traffic” requirements and the following kind of documents are to be submitted to the appropriate FDA office:

Blueprints, sketches, and specifications of the following areas are usually needed:
(1) General Plan – Inboard and Outboard Profiles
(2) Deck by deck layout showing all spaces
(3) Layouts of all food spaces includes galleys, pantries, bell boxes, dining areas, lounges, bars, dry provisions rooms, walk-in refrigerators and freezers, thaw
rooms, all other food preparation, service and storage rooms, garbage handling room, trash incineration rooms, etc. showing location of food service equipment

(4) Book of food service equipment specifications for all food spaces with model number, manufacturer’s name and address, pictures, sketches

(5) Diagram and drawings of potable water system showing locations of sea chests, evaporators, RO devices, tanks, chlorinators, chlorine analyzers, service outlets, backflow preventers, etc.

(6) Lists of backflow preventers and where used in the potable water system as well as a specification sheet for each kind of backflow preventer.

(7) Operator’s manuals and specification sheets for potable water evaporators and reverse osmosis equipment

(8) Diagrams and specifications for all pools and spas showing water supply, overflow scuppers, drains, drain piping, backflow preventers

(9) Specification sheets for marine sanitation devices and sewage holding tanks with IMO/USCG specification numbers

(10) Diagram showing location of all overboard discharges for the sewage system

(11) Black water system drawings

(12) Grey water and plumbing drains drawings

(13) Sketch of air handling units in AC/fan rooms showing inspection ports and access for cleaning (for passenger vessels)

D. Contact the appropriate FDA district office to set up inspections.
VII. RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS Mission Statement and Health, Safety, Quality & Environmental Policy</td>
<td>August 1, 2017</td>
</tr>
<tr>
<td>ABS Mission Statement and Health, Safety, Quality & Environmental Policy updated.</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>August 1, 2017</td>
</tr>
<tr>
<td>Updated reference section to reflect most current consolidated editions of SOLAS and MARPOL as references.</td>
<td></td>
</tr>
<tr>
<td>Removed language regarding the removed survey checksheet sections (Previously Section VI and VII).</td>
<td></td>
</tr>
<tr>
<td>Updated various section explanations and applicabilities.</td>
<td></td>
</tr>
<tr>
<td>Updated the referenced websites for the MSM Vol II cites and the ACP NVIC.</td>
<td></td>
</tr>
<tr>
<td>Section I</td>
<td>August 1, 2017</td>
</tr>
<tr>
<td>Updated the cite and title for DP from 4-3-5/15 to 4-3-5/1.3.2.</td>
<td></td>
</tr>
<tr>
<td>Added the cite for low flashpoint fuels 4-6-4/13.13</td>
<td></td>
</tr>
<tr>
<td>Updated cites for multiple Remote Propulsion Control and Automation requirements in ABS Rules Part 4, Section 9.</td>
<td></td>
</tr>
<tr>
<td>3-3-1/3.1 Deleted sentence regarding Oceanographic Research Vessels.</td>
<td></td>
</tr>
<tr>
<td>3-3-1/3.3 Reworded section to make clear that all vessels shall meet probabilistic damage stability in SOLAS, regardless of changing flags & build date.</td>
<td></td>
</tr>
<tr>
<td>4-3-5 Updated the cite and title for DP from 4-3-5/15 to 4-3-5/1.3.2.</td>
<td></td>
</tr>
<tr>
<td>Removed: Cited requirements to meet ABS standards for vital system review, FMEA, schedule of redundancy tests w/ QFA criteria & Design Verification Test Procedures, and a sea trials performance test w/ Surveyor.</td>
<td></td>
</tr>
<tr>
<td>Added: Meet ABS Guide for DP and that DP2/3 FMEA and Proving trials need to meet USCG MTN 2-11</td>
<td></td>
</tr>
</tbody>
</table>
4-6-4/13.13 New item added for low-flashpoint fuels.

4-8-2/11.5.1 & 11.5.5 Added clarification that hand held radios are not an acceptable substitute for sound-powered phones/comms

4-8-2/11.5.3 Added clarification that hand held radios are not an acceptable substitute for sound-powered phones/comms

4-9-1/5.1.10 & 4-9-1/9.17 Removed item.

Updated cites for multiple Remote Propulsion Control and Automation requirements in ABS Rules Part 4, Section 9. Content remained same.

Section II August 1, 2017
General Updates to Equipment Approvals.

II-2/10.5.6 Added Cite to address Fixed Local Application fire-extinguishing systems

III/4 Further clarifications to reflect the policy. Added 160.133 Release Mechanisms to the USCG Approval series.

Section III August 1, 2017
III-B-1 (a) Clarification added to the application requirement.

Section IV August 1, 2017
A-1 Added the amendments to the Guidelines for the design & construction for OSVs.

A-4 Removed redundant info to Section I cite 1-1-5, as applicability was updated so all vessels must start with meeting the requirements of Section I, and Section IV and V either add requirements or alter requirements

A-5 Added sub item 2: Expectations for OSVs (both large and small) intending to carry more than 36 OSWs. Added sub item 3: Existing regulatory restriction of 12 offshore workers on international voyages without passenger ship safety certs

Section V August 1, 2017
Section “Requirements for Oceanographic Research Vessels Certificated Under 46 CFR Subchapter U” removed
New Section V
Section “Requirements for Offshore Supply Vessels Certificated Under 46 CFR Subchapter L and At least 6,000 GT ITC” added.
August 1, 2017

Section VI
Section “Surveys During and After Construction (Not USCG Approved)” removed.
August 1, 2017

Section VII
Section “Surveys During Construction (Not USCG Approved)” removed.
August 1, 2017

Section VIII
Section renumbered to Section VI.
August 1, 2017

Section IX
Section “Surveys During Construction (Not USCG Approved)” removed.
August 1, 2017